JONES Demonstrator V2

In the first demonstrator, we have introduced some technical notions like BPEL, WSDL, process,
(Web) services, and orchestration.

The aim of demonstrator V1 was to show the agility offered by BPEL orchestration.

We will now introduce a new software component into the architecture: an ESB Bus

by orchestrating webservice and business service exposed by an ESB, thanks to a BPEL engine.

The scenario :

I reserve a hotel and possibly a restaurant and I obtain a recapitulative e-mail with the sum to be
paid.

What is PEtALS ?

PEALS is the highly distributed Open Source ESB hosted by OW2. PEtALS delivers the OW2
Java TM Business Integration (JBI) platform.

Bu%in&s@
vices

-, |

Petals

-
Cenfralized
dministration
< and

Montoring

Distributed
redistry

To promote such an architecture, PEtALS implements the Java(tm) Business Integration
specification (JSR 208). J.B.I. describes a "Service Component" approach.

Components are elements that offer services. Those Components are plugged on a JBI container.
Services they expose are accessible through Endpoints.

Each consumer-component can request the JBI container to find a service. The JBI container gives
to the consumer the corresponding Endpoint. Then, the consumer sends a message to the service-
provider thanks to this Endpoint.

The JBI specification is strongly based on WSDL. Thus, each Component has to provide a WSDL
description of the services it exposes. That's why PEtALS services are BPEL compliant.

PEtALS installation:

Information:
We are going to use functional version of the PEtALS which is 1.3
All the tests and information which will follow concern realizations made under Windows..

PEtALS 1.3 is downloadable at this address http://forge.objectweb.org/project/download.php?
group_id=213&file id=8401.

A directory named PEtALS-standalone-1.3 will appear after the downloaded archive will be
unzipped, which we will henceforth name $PEtALS HOMES.

Now, we have to create a PEtALS HOME environment variable which will be logical name for the
previously mentionned directory.

Now, you have to check if you can launch PEtALS by a double-click on SPEtALS HOME
$\bin\startup.bat (startup.sh under Linux)

You should obtain the window represent by the figure bellow :

= CAWINDOWS\system32\cmd.exe

Petals is starting...

[petals.TribeJNDIAgentService] SocketServerThread.run() TRIBe JNDI server starte
d on 194.199.25.15: 7720

HttpAdaptor version 2.1.1 started on port 7080

H#H#H#H Petals container correctly started HEHHH

Service exposition on PEtALS bus

In the archive named Composants DemoJOnES V2.zip which joins this documentation, you will
find the following archives :

PEtALS-bc-mail-1.2.zip
PEtALS-bc-soap-1.3.zip
PEtALS-se-mail-1.0.zip
PEtALS-se-sampleclient-1.3.zip
sa-consume-mailService.zip
sa-provide-sendMailService.zip
sa-provideMS-consumeSMS.zip

There are three types of components:
1. The binding components which make external link to application
2. The service engines which add functional service ti the bus
3. The service assembly which are the concrete service used by the demonstrator

We can notice that a binding component is reachable by two types of artifacts, the consume and the
provide which allow different behaviour.

e Binding Components

The mail binding component allows to send and receive mails through PEtALS.
The soap binding component allows either to expose an external service as an endpoint on the bus
or to expose an endpoint as an external webservice.

e Service Engines

The mail SE has been implemented in order to fill a missing functionnality of the PEtALS used
version. Indeed, the communication inside the bus uses the MEP protocol which allows four
possibilities : In-Only, In-Out, In-optional-Out, Robust-In-Only.

The soap-bc we use to call the mail service only allows In-Out while the bc-mail only supports In-
Only calls. So we had to develop a component to transform the Message Exchange Pattern to make
these two components compatible.

We can notice that since PEtALS 2.0, the problem doesn't exist anymore.

The SE SampleClient is provided on PEtALS distribution, and is a graphical client which allows to
identify different service on the bus on to communicate with them.

e Services
There are the service we will use on the demonstrator which are not BC and SE
For more information on the specification, please read the official documentation about JBI

(http://java.sun.com/integration/1.0/docs/sdk/) and PEtALS
(http://PEtALS.objectweb.org/documentation.html) .

Archives deployment :
Let's detail the deployment of the need components and artifacts for our demonstrator.

It's very easy to deploy a component on PEtALS : you just have to copy the archive to deploy and
to paste it on SPEtALS HOMES\install directory.

Let's copy the four following archives :PEtALS-bc-mail-1.2.zip, PEtALS-bc-soap-1.3.zip, PEtALS-
se-mail-1.0.zip, et PEtALS-se-sampleclient-1.3.zip at the same time on the mentionned directory.

You may have the window graphically represented by the figure bellow where red surrounded parts
show us the installation is successfull.

http://wiki.petals.objectweb.org/xwiki/bin/view/Main/WebHome

\WINDOWS\system32\emd.exe

Petals iz starting...

[petals . TribedJHDIAgentService] SocketServerThread.run<?> TRIBe JHDI zerver starte

d on 194.199.25.15:7728@

HttpAdaptor version 2.1.1 started on port YAEE

itttk Petals container correctly started HHEHHEHR

[petals.inztallatinnservice] TnstallationServicelnpl.loadNewInstaller(> Componen

t succesfully installed: petals—sample—clienti

[petals _component-petals—sanmple ciienid

[petals .component .petals—sample—client] [petals—sample—client] start

[petals _dinstallationservicel InstallationfServicelnpl.loadNewInstaller(> Componen

t szuccesfully installed: petals—hinding—mail

[petals .componeni -petals binding—maill [petals—hinding—maill Thread pool values
CQueue size = 5@, Core pool size : 1@, Max pool size : 5@, Keep alive : 6HA ms
[pﬁtals.cumpunent.petals—hinding—mail] [petals—binding—maill Component initiali

=e

[petals .component.petals—binding—maill [petals—hinding—maill start
[petals.inzstallationsewrnice] InstallationServicelnpl.loadNewInstaller(> Componen

t succesfully installed: petals—hinding—soan

[petals .component .petais—hninding—soapl Thread pool configuration —* Queue size
: 58, Core pool size : 18, Max pool si=e : 58, Keep alive : 6HH ms

[petals .component .petals—hinding—soap] Component initialized

[petals .component.petals—hinding—soapl start

2007-10—-24 14:46:-15_258::INF0: Logging to STDERR via org.morthay.log.StdErrLog

2007-18-24 14:46:15.580::TNF0: Jjetty-6.08.2

2087-18-24 14:46:15.593::INF0: Started SocketConnector @ B.8.60.8:8684

[petals .component .petals—hinding—soap]l HTITP server started on port = B8A84
[petals.inzstallationservice] InstallationServicelnpl.loadNewInstaller(> Componen

t znccesfully installed: petals—se—mailtest

[petals .component . petals—se—malltest] Thread pool configuration —* Queue size
: 58, Core pool size : 18, Max pool si=e : 58, Keep alive : 6HH ms
[petals.component.petals—se—mailtest] Component initialized

[petals .component .petals—se—mailtest] start

If the Se-client is successfully installed, this window should appear on your screen

als - Sample client

Send Query
Service

Service {hitpeipetals.objectweb.orgfiHelloworld Service
Operation printMessage
Endpoint
Attachments
Add attachments Remove selected

Message exchange pattern
! InOnky InOut
InOptionalOut RobustinOnhy

Request ! Response body
In

=tent=hi l=text=

Out

Properties

Send

4

SendSync o 3 .
“PEIALS ebBM*

Send - Accept {block)

Now, we have to deploy the following components one by one :

provide-sendMailService.zip
[petals.deploymentservice] DeploymentServicelmpl.deploy{} Service Assemhly succe
zfully deployed: petalz—sa—mailhc

[petals.deploymentservice] DeploymentServicelmpl.start(? petalzs—sa—mailbc succes
zfully started

e sa-provideMS-consumeSMS.zip

[petals .deploymentservice] DeploymentServicelmpl.deploy<> Service Aszszembhly succe
zfully deployved: petalz—sa—helloworldtoext

[petals .deploymentzervice] DeplovymentServicelmpl.start() petals—sza—helloworldtoe
. . =tarted

e sa-consume-mailService.zip

[petals . .deploymentservice] DeploymentServicelmpl.deploy{> Service Assembhly succe
zfully deployed: petals—sa—sendmail

[petals .component .petalz—hinding—soapl Registering ‘MailService’ Axisz service
[petals.deploymentservice] DeploymentServicelmpl.start(? petals—sa—sendmail succ
ezsfully started

We can notice that for this last component deployment, we have this trace« Registering
'MailService' Axis service ». It means that the MailService EndPoint is reachable through an axis
URI like http://HOST:port/axis2/services/MyService?wsdl

exp : http://192.168.1.10:8084/axis2/services/MailService?wsdl

WARNING : Services Assemblies can only be successfully deployed if binding-components and
services-engines they depend on, are previously deployed. Furthermore, service deployment are
intentionnally ordered because of the dependencies.

Thats's why the deployment order is important.

A bad deployment could make PEtALS crash.

Now, we have got three webservice, which are reachable through an URI:
Hotelboolking :
http://chlore.inrialpes.fr:8080/hotelbooking/celtix/hotelbooking

RestaurantBooking :

http://chlore.inrialpes.fr:8080/restaurantbooking/celtix/restaurantbooking

MailService

http://localhost:8084/axis2/services/MailService

http://194.199.25.15:8084/axis2/services/HotelBookingService
http://chlore.inrialpes.fr:8080/restaurantbooking/celtix/restaurantbooking
http://chlore.inrialpes.fr:8080/hotelbooking/celtix/hotelbooking

Orchestration of Webservice with Orchestra

You just have to modify the URL on hotelbooking.wsdl and restaurantbooking.wsdl files located on
$ORCHESTRAS\BPEL\samples\booking directory.

Hotelbooking.wsdl

Let's replace http://chlore.inrialpes.fr:8080/hotelbooking/celtix/hotelbooking by http://localhost:
8084/axis2/services/HotelBookingService

<wsdl:service name="RestaurantBookingService">
<wsdl:port name="restaurantbooking" binding="impl:restaurantbookingSoapBinding">
<wsdlsoap:address location="http://chlore.inrialpes.fr:8080/hotelbooking/celtix/hotelbooking"/>
</wsdl:port>
</wsdl:service>

Restaurantbooking.wsdl

Let's replace http://chlore.inrialpes.fr:8080/restaurantbooking/celtix/restaurantbooking by
http://localhost:8084/axis2/services/RestaurantBookingService

Then, you just have to delete and redeploy the booking service (provided with archive on wsdl bpel
directory) on orchestra and launch it in the same way than on demonstrator V1.

Reloading wsdl files by redeploying booking service, will allow to work with PEtALS exposed
services.

Now that the orchestration is available, you have to use the webclient provided on an archive too.
The process to deploy it is the same than in Demonstrator V1.
Once your webclient application is launched, you may have this window :

£} Hotel & Restaurant Bo... [lIm] b

Fichier Edition Affichage Historique Marc

Welcome to the

'‘Hotel & Restaurant’ Booking Web Page

Booking preferences
Number of rooms to ||
book:
Book a restaurant too? © Yes
T No

Confirmation e-mail |
{(optional):
Eh:u:uk[\l
""\5

http://194.199.25.15:8084/axis2/services/RestaurantBookingService
http://194.199.25.15:8084/axis2/services/HotelBookingService
http://194.199.25.15:8084/axis2/services/HotelBookingService
http://194.199.25.15:8084/axis2/services/HotelBookingService
http://194.199.25.15:8084/axis2/services/HotelBookingService
http://194.199.25.15:8084/axis2/services/HotelBookingService
http://chlore.inrialpes.fr:8080/hotelbooking/celtix/hotelbooking
http://194.199.25.15:8084/axis2/services/RestaurantBookingService
http://194.199.25.15:8084/axis2/services/RestaurantBookingService

