
BPEL orchestration demonstrator
Implementing and running the client

Tools & Prerequisite...2
Attachments... 2
Environment initialisation..2

Testing services.. 3
Unit-tests of “HotelBooking & RestaurantBooking” services.. 3
BPEL orchestration testing.. 4

Building a client for the “Booking” service... 7
Building a simple test client...7
Implementing a client for the demonstration...7

Running the demonstration...10
Scenario... 10
Setting the environment... 10
The demonstration step by step... 10

Annexes.. 11
Initializing Celtix/Altix environment...11
Updating WSDL for Orchestra.. 11

Tools & Prerequisite
Needed tools for developing and testing are:

• Java JDK 1.5
• Apache Ant 1.7.0
• Celtix & Axis 1.4
• Orchestra 3.0.3 and its prerequisites
• Optional : IDE Eclipse 3.2 & resin 2.1.14

If you use your own way to develop and launch a client for the booking service, these tools
may be unnecessary.

In this document, we will describe each step:
• Unit testing of called WS
• Simple BPEL orchestration testing
• Building a client for the “booking” service

Attachments
Some ZIP archives should come with this tutorial:

• “HotelBooking & RestaurantBooking” sources
• Online.zip: WSDL shared files
• src.zip: both services sources
• ClientSrc.zip: WS testing sources

• The « BPEL & Orchestra » part
• bsoa.zip: Files to be deployed in Orchestra

• The « Client » part
• DemoBPELOrchestraTest.zip: Eclipse Workspace of the unit-test client
• DemoBPELOrchestraClient.zip: Eclipse Workspace of the demo client
• resin-booking.zip: Built servlet (webapp in server-side)

Environment initialisation
You will find in annexes scripts allowing to initialize the environment to run examples of this

document. According to the where your tools are located, those scripts may have to be modified.

Testing services

Unit-tests of “HotelBooking & RestaurantBooking” services
We can generate simple clients to test these WS calling thanks to Celtix:

mkdir hotelbookingclient
wsdl2java -p org.ow2.jones.demo.booking.service.hotelbooking -client -d
hotelbookingclient -ant
http://chlore.inrialpes.fr:8080/hotelbooking/celtix/hotelbooking

mkdir restaurantbookingclient
wsdl2java -p org.ow2.jones.demo.booking.service.restaurantbooking
-client -d restaurantbookingclient -ant
http://chlore.inrialpes.fr:8080/restaurantbooking/celtix/restaurantbooki
ng

Then you need to modify default implementations before to launch tests. You will find in the
“ClientSrc.zip” a sample of client implementation for “HotelBooking” & “RestaurantBooking”
services. To build Java sources and launch test, you just have to run the following commands:

cd restaurantbookingclient
ant RestaurantBooking.Client
cd ..
cd hotelbookingclient
ant HotelBooking.Client

Java classes are the compiled and CeltixRun will execute client code with the good
environment. Results are display on the console; in our sample, you should obtain the following
result:

Invoking bookRestaurant...
 0. Invoking with arg "NULL"
javax.xml.ws.WebServiceException: Could not set parts into wrapper
element
 [...]
 NULL
 1. Invoking with arg ""
 Result: true
 Price: 50
 Message: Restaurant successfully booked (full price)
 2. Invoking with arg "HalfPrice"
 Result: true
 Price: 25
 Message: Restaurant successfully booked (half price)
 3. Invoking with arg "FreeWithHotel"
 Result: true
 Price: 0
 Message: Restaurant successfully booked (for free)
 4. Invoking with arg "BadPromoCode"
 Result: false
 Price: 0
 Message: Error booking restaurant

Invoking bookHotel...
 0. Invoking with arg "0"
 Result: false
 Price: 0
 Message: Error booking hotel: You have to book 1 room at least
 RefCode:

http://s4allsdk.objectweb.org/demo/test/wsdl/hotel.wsdl
http://s4allsdk.objectweb.org/demo/test/wsdl/hotel.wsdl
http://s4allsdk.objectweb.org/demo/test/wsdl/hotel.wsdl

 1. Invoking with arg "1"
 Result: true
 Price: 100
 Message: 1 rooms sucessfully booked
 RefCode: HalfPrice
 2. Invoking with arg "2"
 Result: true
 Price: 200
 Message: 2 rooms sucessfully booked
 RefCode: HalfPrice
 3. Invoking with arg "3"
 Result: true
 Price: 300
 Message: 3 rooms sucessfully booked
 RefCode: FreeWithHotel
 4. Invoking with arg "9"
 Result: true
 Price: 900
 Message: 9 rooms sucessfully booked
 RefCode: FreeWithHotel
 5. Invoking with arg "10"
 Result: false
 Price: 0
 Message: Error booking hotel: Only 9 rooms available
 RefCode:

BPEL orchestration testing
For testing, we will use Bull Orchestra BPEL engine.
We will describe here the whole manipulation, from Orchestra installation to “Booking”

BPEL process deployment and test in the “Orchestra Web Console”.

Prerequisite for Orchestra install
Orchestra install procedure is available at the following URL:

http://wiki.orchestra.objectweb.org/xwiki/bin/view/Main/Documentation. It needs JDK, JOnAS and
Apache Ant. The JOnAS install procedure is available here:
http://jonas.objectweb.org/current/doc/howto/install_j2ee.html; this one require BCEL.

Notice: sometimes I got an error message saying that « org.apache.tools.ant.launch.AntMain »
class was not found. A possible by-pass is to copy “ant-launcher.jar” Ant Jar file to
« ${JONAS_BASE}/lib/ext/ » Orchestra folder.

Needed files for BPEL orchestration testing
Importing a BPEL process in Orchestra requires at least 2 files: WSDL & BPEL service

description. In our example, we need 4 files (available in the “bsoa.zip” archive):
• booking.bpel : BPEL process description;
• booking.wsdl : interface allowing to expose the BPEL process as a Web-Service and

to call it from the Orchestra Web Console (or from another client);
• hotelbooking.wsdl & restaurantbooking.wsdl : WSDL of WS directly interacting with

the BPEL process (that is to say referenced in the BPEL file as partner links).

To add the “booking” BPEL process, we can add a “booking” forlder in the
“<BPEL_HOME>/samples” directory, and copy inside the 4 previously mentioned files.

Deploying the BPEL process
There are two ways to deploy the BPEL process: command line or Web Console.

http://jonas.objectweb.org/current/doc/howto/install_j2ee.html
http://wiki.orchestra.objectweb.org/xwiki/bin/view/Main/Documentation

Here's the command line to enter under Windows OS:
REM Start the BSOA server if needed
bsoap start

REM (Re)deploy the booking process
bsoap deploy -samples -p booking
%BPEL_HOME%\samples\booking\hotelbooking.wsdl
%BPEL_HOME%\samples\booking\restaurantbooking.wsdl

The second way is to use the Orchestra Web Console available at the floowing URL:
http://localhost:9000/jiapAdmin/ (most generally http://<host>:<port>/jiapAdmin/ depending of
your Orchestra installation). Then a way to deploy “booking” process is:

● Menu “Conceptor” / “Import Files”
● Process bpel file : <BPEL_HOME>/samples/booking.bpel
● Process wsdl file : <BPEL_HOME>/samples/booking.wsdl
● External wsdl file : <BPEL_HOME>/samples/hotelbooking.wsdl and

<BPEL_HOME>/samples/restaurantbooking.wsdl
● Select “Import”
● Menu “Operator/Process Models” : Click on the orange triangle of the booking line.

Starting/testing the BPEL process
We use the Orchestra Web Console (http://localhost:9000/jiapAdmin/). In the menu “Operator

/ Process Models”, ilwe click on the green, triangle of the “booking” line, and do the same in the
next screen. The following screen should appear:

http://localhost:9000/jiapAdmin/
http://localhost:9000/jiapAdmin/

This screen is generated from the WSDL, and so is waiting for “roomNumber” and
“isRestaurant” input parameters.

If everything is OK, when click on the “Submit” button, the form is updated (“OutputParts”)
and the response is displayed (“bresponse” variable, see code source BPEL):

Building a client for the “Booking” service
Once the BPEL booking process successfully deployed in Orchestra (or another BPEL

engine), we can test it outside of the Orchestra Web Console in many different ways: web pages and
javascript, Java stand-alone program, Servlet, and more generally with anything able to call a WS.

Building a simple test client
We can simply generate a Java client with Celtix and “Booking” WSDL service (available in

the “bsoa.zip” archive). From a folder containing the booking.wsdl file, just enter the following
command line:

wsdl2java -client -p org.ow2.jones.demo.booking.client -ant booking.wsdl
that will generate in the current folder Java sources of a client. Then you have just to modify the
Java class « org.ow2.jones.demo.booking.client.BookingClient ». To start the test, type:

ant Booking.Client

The “DemoBPELOrchestraTest.zip” archive contains an implementation example of
“BookingClient.java”. A possible result (depends of the content of “booking.bpel” deployed in
Orchestra) may be the following:

>ant Booking.Client
Buildfile: build.xml

compile:
 [mkdir] Created dir: E:\INRIA-OW\Projets\tmpworkspace\DemoBPELOrchestraClient\src\build\classes
 [javac] Compiling 7 source files to E:\INRIA-
OW\Projets\tmpworkspace\DemoBPELOrchestraClient\src\build\classes

Booking.Client:
 [java] Invoking book...
 [java] 0;true : 50;false;Error booking hotel: You have to book 1 room at least - Restaurant
successfully booked (full price)
 [java] 1;true : 150;true;1 rooms sucessfully booked - Restaurant successfully booked (full price)
 [java] 2;true : 250;true;2 rooms sucessfully booked - Restaurant successfully booked (full price)
 [java] 3;true : 300;true;3 rooms sucessfully booked - Restaurant successfully booked (for free)
 [java] 4;true : 400;true;4 rooms sucessfully booked - Restaurant successfully booked (for free)
 [java] 5;true : 500;true;5 rooms sucessfully booked - Restaurant successfully booked (for free)
 [java] 6;true : 600;true;6 rooms sucessfully booked - Restaurant successfully booked (for free)
 [java] 7;true : 700;true;7 rooms sucessfully booked - Restaurant successfully booked (for free)
 [java] 8;true : 800;true;8 rooms sucessfully booked - Restaurant successfully booked (for free)
 [java] 9;true : 900;true;9 rooms sucessfully booked - Restaurant successfully booked (for free)
 [java] 10;true : 50;false;Error booking hotel: Only 9 rooms available - Restaurant successfully
booked (full price)
 [java] 0;false: 0;false;Error booking hotel: You have to book 1 room at least - No restaurant
booked
 [java] 1;false: 100;true;1 rooms sucessfully booked - No restaurant booked
 [java] 2;false: 200;true;2 rooms sucessfully booked - No restaurant booked
 [java] 3;false: 300;true;3 rooms sucessfully booked - Restaurant successfully booked (for free)
 [java] 4;false: 400;true;4 rooms sucessfully booked - Restaurant successfully booked (for free)
 [java] 5;false: 500;true;5 rooms sucessfully booked - Restaurant successfully booked (for free)
 [java] 6;false: 600;true;6 rooms sucessfully booked - Restaurant successfully booked (for free)
 [java] 7;false: 700;true;7 rooms sucessfully booked - Restaurant successfully booked (for free)
 [java] 8;false: 800;true;8 rooms sucessfully booked - Restaurant successfully booked (for free)
 [java] 9;false: 900;true;9 rooms sucessfully booked - Restaurant successfully booked (for free)
 [java] 10;false: 0;false;Error booking hotel: Only 9 rooms available - No restaurant booked

BUILD SUCCESSFUL
Total time: 18 seconds

Implementing a client for the demonstration
We choose to implement the client shown in the demonstration through a Java Servlet

deployed in the “resin” Servlet engine. We will use a mix of web technologies such as XHTML,
XForms, CSS, XSLT...

Here's the step by step description of the implementation process.

1. Generating Java code calling the “booking” service
We use here AXIS to generate the client (for unknown reason and a lack of debugging time,

we did not use Celtix, because CELTIX_HOME environment variable was not correctly initialized
when running in a Resin Servlet context). The command line is the following one:

cd <client_folder>
java org.apache.axis.wsdl.WSDL2Java -p org.ow2.jones.demo.booking.client
http://s4allsdk.objectweb.org/demo/booking/booking.wsdl

2. « resin » install
We used an open source servlet engine called resin (version 2.1.14) available here:

http://www.caucho.com/download/index.xtp. To install it, unzipping the downloaded archive is
enough. Then servlets have to be deployed in the “<RESIN_HOME>/webapps” folder.

The “resin-booking.zip” archive contains a “server-side” image of the “booking” service
client, and which has to be uncompressed in the “<RESIN_HOME>/webapps” folder.

3. Implementing the client with Eclipse
This step is not compulsory because the “resin-booking.zip” contains a build server-side

image of the “booking” client.
If you want to modify sources using Eclipse, use the workspace included in the

“DemoBPELOrchestraClient.zip” archive, but modify the “.project” file before opening the
workspace into IDE:

<?xml version="1.0" encoding="UTF-8"?>
<projectDescription>
 <name>DemoBPELOrchestraClient</name>
 <comment></comment>
 <projects>
 </projects>
 <buildSpec>
 <buildCommand>
 <name>org.eclipse.jdt.core.javabuilder</name>
 <arguments>
 </arguments>
 </buildCommand>
 </buildSpec>
 <natures>
 <nature>org.eclipse.jdt.core.javanature</nature>
 </natures>
 <linkedResources>
 <link>
 <name>resin</name>
 <type>2</type>
 <location><RESIN_HOME>/webapps/booking</location>
 </link>
 <link>
 <name>lib_axis</name>
 <type>2</type>
 <location><AXIS_HOME>/lib</location>
 </link>
 <link>
 <name>Client</name>
 <type>2</type>
 <location><SRC_HOME></location>
 </link>
 </linkedResources>
</projectDescription>

http://www.caucho.com/download/index.xtp

<RESIN _HOME> means the folder where “resin” is installed in, <AXIS_HOME> the Axis
one, and <SRC_HOME> the one containing Java sources. The Eclipse workspace should looks like

the following annotated screen-shot. Note that using the “auto-build” option in Eclipse, any saved
modification in Java sources are automatically deployed in “Resin”.

4. Acceding the client
If “Resin” is installed locally and started (see “<RESIN_HOME>\bin\httpd”), you can access

the servlet at the following URL: http://127.0.0.1:8080/Booking/booking (according to the
“web.xml” file).

http://127.0.0.1:8080/Booking/booking

Before testing, check that “HotelBooking, RestaurantBooking and Booking” are correctly
deyed. If the form does not appear correctly, it may be because your web browser does not support
XHTML/XForms (for Firefox, use the plug-in « Xforms for Mozilla » available here:
https://addons.mozilla.org/firefox/824/).

https://addons.mozilla.org/firefox/824/

Running the demonstration
Notice that the “HotelBooking” Web-Service returns a “refCode” output parameter that is not

used in the BPEL orchestration demonstration.

Scenario
The theme is a room/restaurant booking service. This service is implemented thanks to a

BPEL process itself calling and orchestrating two external WS: HotelBooking &
RestaurantBooking.

The idea is to modify the business logic, and to make this change very easy thanks to agility
given by BPEL orchestration. So we now decide to implement the following rule:

“From now, if a client books successfully 3 rooms at least, a restaurant is automatically
booked too for free”.

Setting the environment
Before starting the demo, you have just to check that “HotelBooking & RestaurantBooking”

services are running, that Orchestra is started and the “booking” BPEL process deployed inside, and
finally “Resin” servlet engine. Finally, check that the form is correctly displayed at the servlet URL.

The demonstration step by step
For more details, please refer the web page explaining the demonstration:

http://chlore.inrialpes.fr:8080/bpeldemo. It is also available off-line in “OnlineDemo.zip” archive.

http://cesium.inrialpes.fr:8080/bpeldemo

Annexes

Initializing Celtix/Altix environment
For Windows OS

@echo off

REM Depends on the environment
REM --------------------------
@set APP_HOME=E:\INRIA-OW\Projets\JOnES\Demo-07.02\WS
@set JAVA_HOME=C:\Sun\SDK\jdk
@set ANT_HOME=C:\apache-ant-1.7.0
@set CELTIX_HOME=%APP_HOME%\..\tools\celtix
@set AXIS_HOME=%APP_HOME%\..\tools\axis-1_4

REM For everyone
REM ------------
@set AXIS_LIB=%AXIS_HOME%\lib
@set AXISCLASSPATH=%AXIS_LIB%\axis.jar;%AXIS_LIB%\commons-discovery-
0.2.jar;%AXIS_LIB%\jaxrpc.jar;%AXIS_LIB%\saaj.jar;%AXIS_LIB%\wsdl4j-
1.5.1.jar;%AXIS_LIB%\xmlapis.jar;%AXIS_LIB%\xercesImpl.jar
@set PATH=%PATH%;%JAVA_HOME%\bin;%ANT_HOME%\bin;%CELTIX_HOME%\bin
@set
CLASSPATH=.;%CELTIX_HOME%\lib\celtix.jar;%AXISCLASSPATH%;%CLASSPATH%

Updating WSDL for Orchestra
You can notice that WSDL in “online.zip” archive (generated with altix/celtix from

“HotelBooking” and “RestaurantBooking” source code) differs a bit from those contained in
“bsoa.zip” (deployed in Orchestra). Indeed, with original generated WSDL, Orchestra will lead at
runtime to errors such as:

java.lang.ClassNotFoundException: org.objectweb.wiki.ESBi.BookType
To avoid this, we have to modify the “wsdl:types” part of WSDL file in order to give a name

to complex type used in IO parameters. For example, for hotelbooking.wsdl:
<schema elementFormDefault="qualified"
 targetNamespace="https://wiki.objectweb.org/ESBi">
 <element name="bookHotel">
 <complexType>
 <sequence>
 <element name="roomNumber" type="xsd:int"/>
 </sequence>
 </complexType>
 </element>
 <element name="bookHotelResponse">
 <complexType>
 <sequence>
 <element name="bookHotelReturn" type="impl:HotelResponse"/>
 </sequence>
 </complexType>
 </element>
 <complexType name="HotelResponse">
 <sequence>
 <element name="bookingPrice" type="xsd:int"/>
 <element name="bookingResult" type="xsd:boolean"/>
 <element name="refCode" nillable="true" type="xsd:string"/>
 <element name="returnedMessage" nillable="true" type="xsd:string"/>
 </sequence>
 </complexType>

</schema>
we will modify it to:

<schema elementFormDefault="qualified"
 targetNamespace="https://wiki.objectweb.org/ESBi">
 <complexType name="bookHotelType">
 <sequence>
 <element name="roomNumber" type="xsd:int"/>
 </sequence>
 </complexType>
 <complexType name="bookHotelReturnType">
 <sequence>
 <element name="bookingPrice" type="xsd:int"/>
 <element name="bookingResult" type="xsd:boolean"/>
 <element name="returnedMessage" nillable="true" type="xsd:string"/>
 <element name="refCode" nillable="true" type="xsd:string"/>
 </sequence>
 </complexType>
 <complexType name="bookHotelResponseType">
 <sequence>
 <element name="bookHotelReturn" type="impl:bookHotelReturnType"/>
 </sequence>
 </complexType>
 <element name="bookHotel" type="impl:bookHotelType"/>
 <element name="bookHotelResponse" type="impl:bookHotelResponseType"/>
</schema>

	Tools & Prerequisite
	Attachments
	Environment initialisation

	Testing services
	Unit-tests of “HotelBooking & RestaurantBooking” services
	BPEL orchestration testing
	Prerequisite for Orchestra install
	Needed files for BPEL orchestration testing
	Deploying the BPEL process
	Starting/testing the BPEL process

	Building a client for the “Booking” service
	Building a simple test client
	Implementing a client for the demonstration

	Running the demonstration
	Scenario
	Setting the environment
	The demonstration step by step

	Annexes
	Initializing Celtix/Altix environment
	Updating WSDL for Orchestra

