
JOnES Project

Enterprise Bus: Requirements and Technology Analysis

Authors:
P. Déchamboux (France Télécom R&D)

C. Hamon (France Télécom R&D)

Contributors:
F. BENABEN (ENSTIMAC)

G. Blondelle (EBM WebSourcing)

A. BOULZE (OW @ INRIA)

M. DUTOO (OPEN WIDE)

D. HUTIN (OW @ INRIA)

A. Louis (EBM WebSourcing)

A. Mos (OW @ INRIA)

S. QUAIREAU (OW @ INRIA)

F. RAVOAJANAHARY (OW @ INRIA)

J. Touzi (ENSTIMAC)

Release:
14/03/2008

Status:
FinalRelease

Version:
1.2.e

41
Introduction

2
Software oriented architecture
5
2.1
What is SOA?
5
2.2
SOA governance
5
2.3
Oasis Reference Model for SOA
5
2.3.1
Basic SOA concepts
6
2.3.2
SOA execution model
7
2.4
Oasis Reference Architecture for SOA
8
2.4.1
Policies and contracts
8
2.5
SOA infrastructures
10
2.5.1
Web Services
10
2.5.2
EAI
10
2.5.3
ESB
11
2.5.4
Summary
11
3
Architectural patterns for SOA
13
3.1
Encapsulation principle
13
3.2
Reduced connectivity management
13
3.2.1
Naming service pattern
14
3.2.2
Broker pattern
14
3.3
Binding architectures
15
4
SOA scenarios
16
4.1
Scenario #1: consumer-to-service traffic monitoring and management
16
4.2
Scenario #2: information system application integration
17
4.2.1
Overview
17
4.2.2
High-level business objectives
17
4.2.3
Non-functional properties, constraints and recommendations
18
4.2.4
Usage view
20
4.2.5
Functional requirements
24
4.2.6
Functional architecture
27
4.2.7
Technical view
27
4.3
Scenario #3: inter-enterprises collaborative business processes
31
4.3.1
High-level business objectives
31
4.3.2
Non-functional properties, constraints and recommendations
32
4.3.3
Usage view
35
4.3.4
Functional requirements
35
4.3.5
Functional architecture design
36
4.3.6
Perspectives
39
4.4
Scenario #4: demonstration of business service orchestration by using a BPEL standard-based
43
4.4.1
Context
43
4.4.2
Demonstrator V1: WebService Orchestration with BPEL
46
4.4.3
Demonstrator V2: BPEL Orchestration of simple WebService and business service exposed as WebService
53
4.4.4
Demonstrator V3: ESB embedded Orchestration of Webservice with database persistence
55
5
ESB PRODUCT ANALYSIS
60
5.1
BEA Aqualogic Service Bus (ALSB)
60
5.1.1
Product strategy
60
5.1.2
ESB definition
61
5.1.3
SOA scenarios
61
5.1.4
Patterns
61
5.1.5
Product architecture overview
62
5.1.6
Infrastructure level management
70
5.1.7
Application level management
72
5.1.8
Business level management
77
5.1.9
Standards compliance
77
5.1.10
Conclusion
78
5.2
IBM WebSphere
79
5.2.1
Product strategy
79
5.2.2
ESB definition
79
5.2.3
SOA scenarios
79
5.2.4
Patterns
80
5.2.5
Product architecture overview
82
5.2.6
Infrastructure level management
83
5.2.7
Application level management
86
5.2.8
Business level management
89
5.2.9
Standards compliance
89
5.2.10
Conclusion
89
5.3
Standalone software bus
91
5.3.1
EBM WebSourcing PEtALS
91
6
Standardization
92
6.1
JBI
92
6.1.1
Introduction
92
6.1.2
Architecture
92
6.1.3
JBI and Web Services
95
6.1.4
Limitations of the current specification and evolutions
95
6.1.5
Toward a JBI component market
96
6.2
SCA
96
6.2.1
Introduction
96
6.2.2
Assembly Model
97
6.2.3
Client and Implementation Models
98
6.2.4
Policy Framework
99
6.2.5
Binding Specifications
100
6.3
Relationship between SCA and JBI
100
6.4
Discussion on SCA and JBI Mapping
101
6.5
Possible Integration of SCA and JBI in Development
102
6.6
SCA / JBI Mapping Scenario using STP-IM
103
7
Document Management
107

1 Introduction

The goal of this document is two fold. First it enumerates the main functions that are expected when talking about enterprise bus and particularly enterprise service bus. Indeed there is currently no common understanding of what should be provided as functions of such buses.

In a second time, it analyses the current state of the market by looking at different kinds of products that claim supplying the enterprise bus solution. The market exhibits various products that span from hardwired XML appliances to full-fledged application servers that provide advanced connector support.

Finally, it examines the standardization landscape and examines the functions and architecture principles that are proposed. Considering the state of the art as described before as well as the expectations of users, it is interesting to see if a convergence may appear in that domain and what can be the basis for such a convergence.

2 Software oriented architecture

2.1 What is SOA?

According to the Oasis Reference Model (RM) for SOA 1.0, a SOA is a "paradigm for organizing and utilizing distributed capabilities that may be under the control of different ownership domains".

SOA general goals can be summarized as follows:

· Software reuse;

· Business agility and adaptability increase;

· Manageability increase.

SOA should be a functional architecture but it appears that SOA, today, is essentially a set of concepts and related technologies.

A Service Oriented Architecture, with associated governance rules, should organize capabilities in order to achieve functional reuse, growth and interoperability.

2.2 SOA governance

The idea behind SOA governance is to provide best practices and guidelines to IT projects. In particular, it should promote sharing of services, administration resources, policies, XML schemas, and so on across the IT organization as well as processes and tools ranging from SOA design to SOA testing.

To illustrate this idea, the service repository is perceived as a key component for SOA governance. Indeed, it contains the meta-data of the specific SOA environment (services, customers, providers, contracts, policies, etc.) and plays the role of a referential repository.

Companies applying appropriate governance techniques are more likely to realize the potential of an SOA approach. However, figuring out governance goals and the different steps to reach them is still a major challenge for companies today.

2.3 Oasis Reference Model for SOA

Several distributed architectures are possible with a service oriented approach. They answer different classes of functional needs and they do not have the same impacts on performance, scalability, evolution capability, etc. A tricky task obviously consists in identifying different classes of solutions with respect to well-defined sets of functional and non-functional requirements.

The Oasis Reference Model for SOA aims at tackling these issues. It introduces common concepts and vocabulary for reference architectures. Reference architectures share generic architectural principles and form the basis of classes of solutions. Concrete architectures are derived from reference architectures and define specific solution approaches.

SOA implementations combine elements from both generic architectural principles and infrastructure and specifics that define the current needs. They provide protocols, profiles and standards that may be pertinent for specific architectures.

The figure below (see Reference Model for SOA 1.0 from Oasis) shows the relationships between reference architectures, concrete architectures and SOA implementations.

[image: image1.emf]
Unfortunately, no reference architecture and concrete architecture have emerged, while major actors strengthen their position in the SOA marketplace. Currently, it is undeniable that SOA is mainly driven by technology.

2.3.1 Basic SOA concepts

This section presents extracts from the Reference Model for SOA 1.0 from Oasis accessible at the following URL:

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=soa-rm
2.3.1.1 Service

A service allows identified functional components to be dynamically exposed or removed in order to be used by local or external service consumers.

The access to the functions provided by the service is constrained by contracts and policies. Interfaces describe the provided functions.

The service specification contains the information and behaviour models exposed through the service interface and the information required by service consumers to determine whether a given service is appropriate for their needs. The service implementation is hidden from the service consumer.

A service is provided by a service provider.

2.3.1.2 Service description

The service description represents the information needed to invoke a service or to reuse the service within a composite service.

A service consumer needs to obtain the following information:

· The service exists and is reachable;

· The service performs a certain function or set of functions;

· The service operates under a specified set of constraints and policies;

· The service will comply with policies as prescribed by the service consumer;

· How to interact with the service.

2.3.1.3 Policies and contracts

The SOA Reference Model distinguishes policies from contracts. Policy is associated with the point of view of individual participants. A contract represents an agreement between two or more participants.

A policy may be asserted by the service consumer independently of any agreement from the service provider. Policies potentially apply to many aspects of SOA (security, privacy, manageability, Quality of Service, etc.), including business-oriented aspects such as hours of business, etc.

Conceptually, Oasis defines three aspects of policies:

· Policy assertion. For example, the assertion: “All messages are encrypted” is an assertion regarding the forms of messages.

· Policy owner (sometimes referred to as the policy subject).

· Policy enforcement. It is usually the responsibility of the policy owner. Techniques for the enforcement of policies depend on the nature of the policy. Conceptually, service policy enforcement amounts to ensuring that the policy assertion is consistent with the real world. For example, this might mean preventing unauthorized actions to be performed.

A service contract governs the requirements and expectations of two or more parties. Like policies, contracts are assertions that can cover a wide range of aspects of services (quality of service agreements, interface and choreography, agreements and commercial agreements).

Contract enforcement may involve resolving disputes between the parties to the contract. The resolution of such disputes may involve appeals to higher authorities.

2.3.1.4 Execution context

The execution context concerns the totality of the interaction. It includes the service provider, the service consumer, the common infrastructure needed to mediate the interaction, the set of agreements between providers, consumers, and any third parties. It also includes a decision point for policy enforcement.

2.3.2 SOA execution model

There are three phases involved in the SOA execution model:

· Services registration (register phase): services register to the repository when they start. They usually register using a well-known logical name that has been agreed between service providers and service consumers.

· Binding to services (lookup phase): when a service consumer wants to bind to a service, it looks up into the service repository and retrieves the right end-point. The service consumer is not aware of the architecture used.

· Service use (interact phase).

The mandatory element of all SOA architectures is the repository. It should always explicitly appear in a functional SOA, even if it turns out that the repository is implemented as an internal mechanism resolving logical end-points to local access points.

2.4 Oasis Reference Architecture for SOA

A Reference Architecture (RA) for SOA is currently being defined by Oasis. To date, a limited number of architectural elements are identified. A few of them are related to policy and contract that represent major concepts in the SOA Reference Model.

This section presents extracts from the Reference Model for SOA 1.0 from Oasis accessible at the following URL:

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=soa-rm
2.4.1 Policies and contracts

A policy and/or contract language is defined by a policy/contract language model. The Reference Architecture does not define a specific policy/contract language model. However, the Reference Architecture states that a policy definition should be based on a policy standard applicable to a SOA in order to achieve higher degrees of interoperability. The policy standards for XACML and WS-Policy both contain policy language models, however, each policy language model provides a different approach to the policy language definition.

The Reference Architecture describes the mechanisms to support enforceable and measurable policy/contract for a distributed computing architecture. It defines Basic Standards Policy and Contract Elements, in particular:

· Policies - Policies are the set of rules/assertions that define the conditions under which resource access requests are to be allowed or denied.

· Contracts - Contracts are the set of rules/assertions that define the agreements under which participant access requests are carried out.

· Policy/Contract Decision Point (DP) – The decision point evaluates participant requests against relevant policies/contracts and attributes to render an authorization decision. The decision point provides a measurement for an assertion. It renders an authorization decision in the form of permit, deny, indeterminate, not applicable, or set of obligations. A decision point may obtain an authorization decision from a computing mechanism or from outside the computing system, decisions by humans through workflow for example.

· Policy/Contract Enforcement point (EP) – The enforcement point enforces the policy/contract decision point decisions. It is responsible for protecting access and determining access compliance to one or more resources. When attempting to access a resource, the enforcement point sends a description of the attempted access to a decision point. The decision point evaluates the request against its available policies/contracts and produces an authorization decision that is returned to the enforcement point.

2.5 SOA infrastructures

Currently, ESBs are presented as a way to create a SOA. SOA can be, on the other hand, implemented using other technologies, in particular, the Web Service technology, an EAI technology or an EDA-oriented technology. This section positions Web Service, EAI and ESB technologies within the context of SOA.

2.5.1 Web Services

Web Service technology provides a uniform usage model for components/services, especially within the context of heterogeneous distributed environments and interoperation with external environments. Web service technology can be used to expose applicative components as well as software or hardware components. Once published as Web Services, components are accessible from any language/run-time that support the Web Services interface; services can be dynamically added, removed or re-configurated.

The Web Services stack is compliant with the SOA execution model. In particular, it provides a service contract and dynamic binding that promote loose-coupling between the service consumer and the service provider.

Of course, SOA processes, governance techniques and service management are essential and should be provided on top of Web Services, as soon as it becomes necessary to manage a growing number of published services and to control their access and usage.

The need of mediation functions (for example, to aggregate or transform the data) or routing functions does not question the choice of a Web Service technology for "simple" SOAs.

2.5.2 EAI

Vendors have created EAI products to solve the communication problem between applications within an organization. In particular, the EAI products address the following problems:

· Protocol conversion;

· Data format transformation;

· Routing messages between applications.

Typical EAI solution follows a "hub-and-spoke" model for application integration. Applications communicate through the EAI hub that centralizes protocol conversion, format transformation and other functions. This pattern certainly makes integration and management easier; however, the centralised hub-and-spoke architecture introduces a single point of failure and is not a scalable solution. EAI vendors have added clustering features to alleviate these problems.

Early definitions of the ESB made EAI and ESB very comparable in their intention (in particular, see the Gartner Group definition of an ESB below). The following differences were underlined: unlike an EAI, an ESB relies on standards and can connect services that are geographically distributed and possibly provided by third-parties.

EAI vendors have added Web Services support to their products and have re-designed and extended their product to grab a part of the ESB market.

2.5.3 ESB

Gartner Group has defined ESBs as a new class of integration tools relying on the following standards: XML language, Web Services (Soap, WSDL, etc.), JCA connectors (J2EE Connector Architecture). According to Gartner, ESBs are also characterized by transformation and routing functions.

Complementary, David Chappell, in its book “Enterprise Service Bus” emphasizes that the ESB is a distributed integration solution with adequate tooling to centrally manage and monitor this distributed solution.

Originally, first commercial ESB products were mainly described as a way to integrate existing middleware services (J2EE application servers, message-oriented brokers, etc.) and products (e.g., B2B solutions) and to connect applications with the required protocol. More recently, since the advent of the SOA approach, ESBs have also been presented as a way to create a Service Oriented Architecture.

Indeed, ESB aim to provide several elements needed to concretely create service oriented architectures, and at least:

· Manage heterogeneous connections : ESB provide effective, standard based solutions to integrate heterogeneous technologies used to create the services.

· Loosely coupling : As they are based on a message exchange pattern , ESB promote loosely coupling between services and then ease to achieve agility in the SOA

ESB editors clearly face two major challenges:

· How to integrate heterogeneous technology and products possibly produced by separate vendors in a way that size appropriately to each particular integration problem?

· How to provide the required features to fully address the specifics of SOA needs?

The JBI standard (see Section 6.1 for more details) seeks to address the first challenge by adopting the SOA principles. An ESB is built from JBI containers that can be an integration framework, a host for Java connectors, an XSLT engine, a mediation engine, etc. JBI maximizes the decoupling between the JBI containers that all provide and consume services, while the ESB links the containers together, allowing them to interact. Currently, it turns out that JBI-compliant ESBs are mostly open-source ESBs that aim at promoting highly configurable and made-to-measure ESBs in order to better fit business needs.

Companies are currently struggling with the second challenge, as they realize that the ESB vendor's solution does not fit their needs. The reasons are manifold: for example, the ESB does not provide management models to control and enforce QoS at different levels and track consumer usage; it does not fit into existing management and security frameworks; it is unable to connect to or evolve toward a B2B architecture. As mentioned in Section 2.3, this problem will still be open, as long as SOA technology editors do not address immediate and long-term business needs, and concrete functional Service Oriented Architectures.

2.5.4 Summary

Web Services technology can be seen as part of an SOA solution, providing a usage model for components, compliant with the SOA execution model. However, Web Services alone do not provide the necessary SOA processes, governance techniques and service management features.

EAI solutions have similar intentions to ESB. However, unlike ESB, EAI solutions do not rely on standards (JBI for example) and cannot connect distributed services, or services provided by third parties.

3 Architectural patterns for SOA

The main principles, which SOA relies on, are concerned with the reduction of coupling between interconnected/distributed applications (service consumers and producers). A large part of these principles leverage on existing results in technical domains such as object-oriented languages or object-based distributed systems [ref ODP].

This section proposes to describe some of these principles or some architectural patterns related to SOA, and to analyse their benefits or their drawbacks. The aim is then to be able to identify them in existing SOA solutions and to better figure out which business requirements these solutions address.

3.1 Encapsulation principle

This principle is borrowed from the object-oriented world. It consists in providing an access point to a service that is clearly defined through a syntactic contract. Such a syntactic contract is nothing else but an interface. It can be implemented as a built-in language construct such as a Java interface, or using an interface language independent from general-purpose programming language for distributed systems such as Corba IDL. The standard way to define SOA contract is through Web Service using WSDL description. Indeed, a WSDL description is the exact equivalent of an ODP interface: it defines typing information about communications (the XML description of data exchanged through a Web Service) as well as the communication port to connect with (the Web Service end-point).

[image: image2.emf]
Then the only way to access a service is through this syntactic contract. Thus, a service consumer can use any service provider that conforms to this contract. By this means, the consumer is independent from any particular service implementation that complies with this contract.

3.2 Reduced connectivity management

Two approaches can be distinguished with respect to connectivity. The first one relates to the binding phase that should rely on a naming service while the second one is concerned with communication channels that all go through a broker. In both cases, the objective is to limit the configuration burden on the consumer side: the goal is to have only one network address to be configured.

3.2.1 Naming service pattern

When a consumer requires accessing a set of services, the basic solution is to configure each of the connections to these services one by one in the consumer. This represents a heavy configuration process and as thus a risk for consumer deployment. With the naming service approach, all consumers of a set of services configure the access to a unique naming service. Then, at start time, the consumer looks for the end point associated with each of the services it requires and then dynamically binds to all the services.

[image: image3.emf]Naming

Service

configuredbindings

SC

SP1

SP2

SP3

SP4

SC

SP1

SP2

SP3

SP4

dynamicbindings(establishedatconsumer

starttime)

For looking for the service end points, consumers and providers may have agreed on well-known names for the services. These names are used by providers to register their service at the naming service, while consumers use them to look for the services (i.e., their associated end points or WSDL).

3.2.2 Broker pattern

With the broker pattern, it is assumed that all services are accessed through a unique communication access point that delegates the service invocations to the relevant service. From the connectivity management point of view, the result is the same as before: consumer only needs to configure one network address (e.g., the broker network address). Then end points can be forged using this address and a name identifying the service within the broker. Just like the previous pattern, consumers and providers need to agree on these discriminating names.

[image: image4.emf]
At the provider side, rather than registering at the naming service, it registers at the broker. Indeed, this is quite the same process, which means that the service provides its interface definition (e.g., a WSDL description) to the broker.

Although both approaches compete with respect to connectivity management, they also exhibit other functions that are mostly independent from each others. Further, they can be complementary in some situations. For example, a company may need to consume some services that are provided by two different entities. There may be a unique trading structure (e.g., a naming service) that allows the consumer to retrieve the end points. Then, access to services is done by connecting to both provider companies, a possible architecture at these companies being to give access to all its services through a broker (i.e., a unique access point such as a third party gateway that can also be seen as a Web Service portal). In any case, setting up a naming service usually reduces the coupling with services or brokers: this is a good practice.

3.3 Binding architectures

One of the main features that is expected with SOA is to be able to intercept calls to services without having to modify the service itself. At a conceptual level, the way to introduce this feature is through the proxy pattern. It can be functionally specialized for different purpose: for instance it can be an adapter or a wrapper. There are several ways to support this feature. One of them is to make interception at the network binding level: it is called. The other one is to make it at the communication borders: either on consumer side or on provider side. Both approaches have their pros and cons, and some ESB products are positioned on each kind of approaches.

4 SOA scenarios

SOA scenarios range from pure functional scenarios involving the reuse and orchestration of enterprise-level business services to more "technical" scenarios dealing with consumer-to-service traffic monitoring and management.

This section presents three usage scenarios with the associated architectural solution using an ESB:

· Consumer-to-service traffic monitoring and management. This scenario demonstrates the integration of service providers and consumers, allowing for the protection and the monitoring of business service traffic, and the sharing of administration resources.

· Information system application integration. – This scenario demonstrates the benefits of using an ESB-implemented SOA architecture to achieve information integration within the Information System of an equipment provider. It features database, XML and flat file integration between four applications and their processes, service-level monitoring and a user and administrator GUI.

· Inter-enterprises collaborative business processes. This scenario concerns a multi-customer / multi-supplier context and shows the integration at the three levels: data, services and process. It deals with the definition of the dedicated collaborative process in order to design the required platform (IS) logical view.

· Business processes orchestration. This scenario demonstrates a way to orchestrate existing services by using a standard orchestration engine. It is based on the BPEL (Business Process Execution Language) standard, which interacts both with technical views and business and usage views.

4.1 Scenario #1: consumer-to-service traffic monitoring and management

This scenario is described in a separate JOnES document accessible at the following URL: https://ow.inrialpes.fr/projects/jones/private/#FT_UseCase
4.2 Scenario #2: information system application integration

4.2.1 Overview

This scenario demonstrates Enterprise Information System Application and Information Integration with the CELINE platform.

The CELINE (“Collaborative E-Logistics InfrastructurE”) equipment provider demonstrator is a platform dedicated to connecting the actors of operational logistics.

4.2.2 High-level business objectives

4.2.2.1 Introducing the application integration problematic

Information system application integration is a problematic as old as the information system itself. Enterprises comprise many business units (production, financial etc.) whose tasks are fundamentally different but complementary. Those different tasks are therefore achieved through different processes and usually different tools and applications as well. From there stems the critical challenge of integrating the business applications within as well as between the business units .

4.2.2.2 Bringing SOA to application integration

It started as the perspective of mere application-to-application integration. However the cost of such an integration strategy is exponential. In order to reduce and control the complexity of integration, the enterprise messaging bus was invented, which requires for integrating a given application to be integrated only with the bus itself. Finally, beyond the technical level addressed by ETL technologies, the SOA paradigm now vows to open up the information system and make it more flexible by following the philosophy of content-based typing, loose coupling and top-down business workflow orchestration.

4.2.2.3 From application integration to information integration

We’ve seen that application integration is the base issue, because different business processes in different business units are implemented by different applications. However, the real value within the existing enterprise information system is the data itself – because it is what has concrete existence, what stays, what may be valorised through processes or exchanges. Enterprise data reside within the enterprise information system in databases that are managed according to sets of rules that constitutes more or less explicitly dedicated applications – i.e. the so-called “data islands”.

The advent of SOA in this context means shaping up the data access and management features by defining their business standard format (typically XML-based) to be used across the information system ESB and the stateless business operations managing them, implementing the business processes on top of these newly defined services, and managing the technical ESB platform.

4.2.2.4 Enterprise Information Integration high-level business objectives

The high-level business objectives of the “Enterprise Information Integration” are as follow :

4.2.2.4.1 Providing a standard, service-oriented “information bus”

to which business applications may be connected and their services made available..

4.2.2.4.2 Providing access to and / or management of the information

That these application and their services provide..

4.2.2.4.3 Providing advanced routing, orchestration and business process definition capabilities

allowing to define composite services..

4.2.2.4.4 Providing sub networks of consistent services and business processes to client applications

4.2.2.4.5 Allowing to build application-dedicated packaged connectors

4.2.2.4.6 Allowing to build web-based applications that will be client

to business services within the network in order to access or monitor data..

4.2.3 Non-functional properties, constraints and recommendations

4.2.3.1 Hot-pluggability and service availability tracking

Applications may come and go, exposing their services and data as they connect to the network as well as getting access to already available services.

Ensuring hot pluggability first consists in providing hot network access and service auto detection. In CELINE it is achieved by using a distributed ESB (Petals) that uses a distributed live service registry.

A second level of hot pluggability is brought by the notion of data availability tracking through emitting and listening to such application connection and disconnection events, allowing the availability of new business processes built on such newly available data. This involves managing a map of available data and services. For now it will not be demonstrated in this use case.

4.2.3.2 Mobility

Mobility allows to have “on-the-field” mobile solutions that are connected to the network and that are able to track and manage the operational situation.

This property is demonstrated in the CELINE use case through the deployment of CELINE onto a mixed Ethernet – WIFI network.

4.2.3.3 Security

Security is of paramount importance in the use case where the equipment provider services are provided to the client through the ESB itself.

This property is demonstrated in the CELINE use case by WIFI level network encryption.

However service access control, which constitutes a second level of security, will not be demonstrated here.

4.2.3.4 Providing business service-level monitoring

This a capital feature in the problematic of managing the deployed technical platform.

4.2.3.5 Reliability

Reliability is required to achieve the agreed upon Service Level across the network. It consists in ensuring that any use of the ESB-connected applications and services will be carried to its end. In CELINE it is achieved by using an ESB (Petals) that ensures that any message sent through it will be brought to the right destination service, and if this service is not currently online, will keep it until it is. This feature, along with application-level error handling, provides reliability across the CELINE network.

ESB-level transactional consistency management provides a second level of reliability.

4.2.3.6 Ensuring information content and semantics consistency across the information network

The data transmitted across the network must follow an aggregated global format that is the most complete, the most useful for the connected applications and potential uses, and at the same time has the less translation cost across the applications connected to the network.

This is achieved through a single, business- and technical- standards based format. Its definition is content-based, which eases compliance across platform versions and deployment instances.

Technical standards are chosen according to the information system ESB ; in CELINE it will be WSDL (web services).

Business standards are :

· either chosen among existing business standards if there are any that are compliant with business challenges and chosen technical standards,

· or defined by a logical mapping of the original information towards the ESB service and data definition standards.

The format definition and the corresponding data management services must allow to identify any piece of compliant data, for example through key fields. This opens the door for data availability management and data tracking.

Actually, this is enough to achieve the information-to-bus translation, but not the global integration advocated by SOA, which still requires for every such data formats to find their least common denominator and use it to define what could be said “the most useful” data format for the ESB. This task requires to analyze every data format across the ESB network, including data consumed and provided by applications, but by network-wide business processes as well.

4.2.3.7 Network and service administration

Including Graphical User Interface.

4.2.3.8 Data tracking, access and monitoring

Including Graphical User Interface.

Requires data identification (see the data consistency problematic).

4.2.3.9 Ease of data format and service definition evolution

This classical feature of IT systems is all the more important that it is a condition to the pluggability and openness of the CELINE platform.

4.2.3.10 High-level technical architecture

[image: image42.wmf]
4.2.4 Usage view

4.2.4.1 Overview of the CELINE equipment provider demonstrator

The CELINE (“Collaborative E-Logistics InfrastructurE”) equipment provider demonstrator is a platform dedicated to connecting the actors of operational logistics.

It connects applications that manage equipment items along their whole lifecycle, including operational use and maintenance.

CELINE may be deployed to provide its operational logistics services to external, on-the-field clients in a ready-for-operations manner.

[image: image43.jpg]
4.2.4.2 Applications

The CELINE equipment provider demonstrator connects four logistics management business applications plus the management and administration portal. In order to demonstrate the openness, flexibility and on-the-field mobility capabilities of the CELINE network, each application is hosted on a separate computer, and those which manage field operations are hosted on mobile computers.

4.2.4.2.1 SIL

The SIL application is the central logistics solution and manages central equipment storage facilities and the availability of equipment items that they provide. In the equipment provider use case the SIL is typically managing the equipment provider’s stored equipment.

The SIL application exchanges CSV formatted message.

It is deployed on a server-type computer and its dedicated CELINE / Petals connector uses an Ethernet connection.

4.2.4.2.2 MUST

The MUST application is the “on-the-field” logistics solution and manages operational uses of available equipments and their maintenance.

MUST is a Java application relying on a Sybase Adaptive Server Anywhere database to store how available equipment are allocated to individual workers. The database is directly accessed by its dedicated CELINE / Petals connector using a service deployed onto the XQuare BC component.

It is deployed on a PDA-type mobile computer and its dedicated CELINE / Petals connector uses a WIFI connection.

4.2.4.2.3 TBMS

The TBMS application manages the operational situation and work tasks and as such has to know how equipment is deployed onto work units.

TBMS uses an XML format to describe equipment allocation to operational work units. It allows the Chief Operation Officer to specify the priority of each allotment.

It is deployed on a PDA-type mobile computer and uses a WIFI connection.

4.2.4.2.4 APPRO

The APPRO application allows to ask for re-supply of the stored equipment items. It exchanges CSV formatted messages.

It is deployed on a mobile computer and its dedicated CELINE / Petals connector uses a WIFI connection.

4.2.4.2.5 Management and administration portal

The management and administration portal allows

· to query the logistics management services across the network in order to track equipment items along their lifecycle

· to monitor every business-level service uses

· To manage the portal itself, including features configuration and access rights for sub networks that are provided to external clients

It is deployed on a server-type computer and its dedicated CELINE / Petals connector uses an Ethernet connection.

4.2.4.3 Roles

4.2.4.3.1 “On-the-field” Equipment Operator

“On-the-field” equipment operators belong to an Operation Team and perform work tasks (according to operational scheduling) using equipment they have been provided with at equipment allocation time.

4.2.4.3.2 Team Operation Officer

The Team Operation Officer actually manages “on-the-field” logistics for its own team using the MUST application. He may also use the platform portal for data tracking and monitoring purposes.

4.2.4.3.3 Chief Operation Officer

The Chief Operation Officer handles operation supervision at the Direction of Operations of the Management Centre of West of Paris Offices using the TBMS application. He may also use the platform portal for data tracking and monitoring purposes.

4.2.4.3.4 Chief Logistics Officer

The Chief Logistics Officer handles operation supervision at the Direction of Logistics of the Management Centre of Ile de France Offices using the TBMS application. He may also use the platform portal for data tracking and monitoring purposes.

4.2.4.3.5 Maintenance Engineer

Maintenance engineers belong to a Maintenance Team and perform maintenance on equipment being in maintenance cycle.

4.2.4.3.6 Re-supply Manager

The Re-supply Manager handles re-supply within a Re-supply Management Unit using the APPRO application.

4.2.4.3.7 Platform Administrator

The platform administrator configures the data tracking and administration platform so as to provide the required services, features and graphical interface for the Chief Operation Officer.

4.2.5 Functional requirements

4.2.5.1 Scenario 1 – Allocating equipment

4.2.5.1.1 Background

The Management Centre of West of Paris Offices comprises x Operation Teams that must regularly notify the Direction of Operations of their equipment’s operational state through a summary This information allow the Direction of Operations to evaluate the operational capacity of its own teams, and from there aggregate those summaries and notify the Management Centre of Ile de France of its own global operational capacity.

Each team and its Team Operation Officer uses the “GIDE” software, which manages allocation of equipment to field technicians as well as gathering the technical facts related to these equipments. Those technical facts (such as breakdown, low battery etc.) will be sent back to the Support Direction.

The Chief Operation Officer within the Direction of Operations of the Management Centre of West of Paris Offices uses the operational supervision "TBMS" software

The Chief Logistics Officer within the Direction of Logistics of the Management Centre of Ile de France Offices uses the SIL software, which centrally manages logistics (including maintenance).

4.2.5.1.2 Process

Allocating and recovering equipment: equipment is allocated to each Operation Team before each work task and then recovered once it has been completed. This is performed “on-the-field” by the Team Operation Officer using the MUST software.

Once all allocating and recovering operations have been done, two distinct information channels are activated:

1. Operational supervision: a summary is automatically sent back to the Direction of Operations of Ile de France. This summary is received on the supervision software (‘TBMS”) through the CELINE connector. The summary is displayed as a table mentioning (for each equipment) its count of theoretical, actual, operational, in use, useless and in stock item. The TBMS software will then display an updated view of the operational situation to the Chief Operation Officer.

2. Maintenance logistics: A summary listing technical facts on equipment items that must enter the maintenance process is sent back to the Support Direction of Ile de France. This summary is received by the Logistic Information System (“SIL”) through its CELINE connector, where they are displayed to the Chief Logistics Officer.

Operational refining of logistics: As we have said , once this information has been sent back, the Direction of Operation is able to evaluate its operational capacity., the Chief Operation Officer may then read the maintenance summary of a given team and from there use the Operational Supervision Software (“TBMS”) to set the priority of intervention on equipment items according to the operational capacity recorded (equipment that hamper the most its operational capacity will be logically prioritized). This results in a message being sent through CELINE, that lists those priority updates, and that is received by the Logistics Information System (“SIL”), where it is displayed to the Chief Logistics Officer, who may in turn handle them and perform any suitable tasks.

4.2.5.2 Scenario 2 – Re-supply and maintenance

4.2.5.2.1 Background

The Management Centre of West of Paris Offices comprises y Maintenance Teams which have to handle technical facts (FITs) (appertaining to equipment in use) that have been sent back. Following scenario 1, the "SIL" software of the Management Centre of West of Paris Offices knows of technical facts (FITs) related to equipment that has been allocated to operational units. Moreover, those FITs have been classified according to operational needs at the operational supervision level through the "TBMS" software. Now these FITs will be handled in the scope of maintenance and re-supply.

Each Maintenance Team uses the "MAINTENANCE" software that is connected to the CELINE network and manages the equipment's operational state as well as their maintenance.

The Re-supply Management Unit uses the "APPRO" software, which manages the re-supply process.

The Chief Logistics Officer within the Direction of Logistics of the Management Centre of Ile de France Offices uses the SIL software, which centrally manages logistics (including maintenance).

4.2.5.2.2 Process

When Logistics Engineers use the "SIL" software, reading and handling FITs may call for manually creating Work Orders ("OT"), which aim to send a Maintenance Engineer onsite to solve problems that FITs have described about equipment items.

Once OTs have been written, they may be associated by Maintenance Engineers with the consumption of some materials, meaning at the SIL level that for example a piece of gear has been replaced. If this piece of gear is available in stock, the emission of the OT brings about the exit of the piece of gear from the stock.

In the opposite case, a Re-supply Note ("FDR") is emitted by the Maintenance Engineer. The re-supply management “APPRO” software receives it in order to be handled by a Re-supply Manager, so re-supply will be actually triggered.

Once re-supply has been completed, the Re-supply Manager notifies the APPRO software, which calls for an enriched version of the Re-supply Note comprising the amount of newly available materials to be sent back through CELINE to the SIL software, for the Chief Maintenance Officer to see it.

4.2.5.3 Scenario 3 – Monitoring equipment availability

4.2.5.3.1 Background

The Management Centre of West of Paris Offices as well as the Team Operation Officer need to track and monitor within CELINE data pertaining to its interests. In Scenario 1, it needs to track and monitor equipment allocation and recovery for each team. In Scenario 2, it needs to track and monitor the operational state of equipment items, i.e. concretely those for which a FIT and optional OTs have been submitted.

The Management Centre of West of Paris Offices uses the CELINE data tracking and administration portal, which is connected to CELINE through its own connector. The Team Operation Officer uses the same portal but with a specific, team-oriented configuration and through a remote WIFI web access. This portal provides several configured queries to track “on-the-field” data within the “GIDE” and “MAINTENANCE” software that are being used by Operation and Maintenance Teams.

4.2.5.3.2 Process

During Scenario 1, at each step, both the Chief Operation Officer and the Team Operation Officer regularly monitor the allocation state of equipment within the "on-the-field" "GIDE" software through execution of the following queries (which are configured in the data tracking features of the portal):

0. "Equipments that have been allocated on operators belonging to a given team" Sends back equipments known by "GIDE" to have been allocated within a given team. This parameterized stored query must be given a single parameter "varEquipe" representing said team criterion.

1. "FITs submitted on equipments of a given type" Sends back FITs submitted in "GIDE" about retrieved equipments of a given type. This parameterized stored query must be given a single parameter "varTypeEquipement" representing said equipment type criterion.

During Scenario 2, at each step, both the Chief Operation Officer and the Team Operation Officer regularly monitor the operational state of equipment within the "on-the-field" "MAINTENANCE" software through execution of the following queries (which are configured in the data tracking features of the portal) :

0. "FITs related on equipment being in maintenance for a given type". Sends back FITs known bye the "MAINTENANCE" software for equipment having a given type. This parameterized stored query must be given a single parameter "varTypeEquipement" representing said equipment type criterion.

Moreover, along the whole process, calls the CELINE’s business services are regularly monitored by the Chief Operation Officer using the service monitoring facilities of the CELINE administration portal.

4.2.5.4 Full scenario

This scenario consists in the scenario 1, 2 and 3 being played consecutively, constituting a single, consistent demonstration of the operational logistics, maintenance and monitoring problematic.

4.2.6 Functional architecture

[image: image44.png]
4.2.7 Technical view

Here are a few technical details showing the most interesting points of how this demonstrator has been implemented in JOnES / Petals.

4.2.7.1 Detection of new data with XQuare BC

MUST / GIDES automatically sends a summary to TBMS in Scenario 1. The MUST / GIDES application is actually a database, connected to the Petals network through services deployed on the XQuare BC component (version 1.0, 12/2006).

In order to do this automatic emission, the XQuare BC component is configured to detect new data through scheduled polling. This detection is implemented by parameterized SQL queries within the XQuare BC configuration. The newDataDelimiterSelect query get the recent data to send. The oldDataDelimiterSelect query stores the value of previous data id, in order to remember if a data has been already send.

Sample of queries:

newdatalistener.delimiter.oldDataDelimiterSelect=select max(taskid) from tasks_xqbc_gides

newdatalistener.delimiter.newDataDelimiterSelect=select max(tasks.taskid) from tasks, missions where missions.job='GIDES' and tasks.missionid=missions.missionid

Once detected, the new data are emitted using the formatting configured in the emission xquery, this way :

Recipient service:

newdatalistener.service={http://www.demogroup.com/celine/mustgides}MustgidesEmissionAffectationForwardService

newdatalistener.operation=forward

Data xquery:

newdatalistener.delimiter.newDataXquery=<Entites xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="CELINE_to_BMS.xsd" Version="3"> \

{ \

for $te_nno in distinct-values(collection("tasks")/tasks[taskid > ##OLD_DATA_DELIMITER## and taskid <= ##NEW_DATA_DELIMITER##]/metadata3/text()) \

let $te_task:=collection("tasks")/tasks[metadata3=$te_nno] \

order by $te_nno \

return \

<TypeEquipement id="{ $te_nno }"> \

 <Domaine>LOG</Domaine> \

 <Nom>{ $te_task/metadata2/text() }</Nom> \

 <NNO>{ $te_nno }</NNO> \

{ \

let $te_affectations:=distinct-values(collection("missions")/missions[job='GIDES' and metadata6/text()!='' and metadata6/text()!=' ']/metadata6/text()) \

for $te_affectation in $te_affectations \

return \

 <LienTypeEquiptEquipt><refid>{ $te_affectation }_{ $te_nno }</refid></LienTypeEquiptEquipt> \

} \

</TypeEquipement> \

} \

{ \

let $f_affectations:=distinct-values(collection("missions")/missions[job='GIDES' and metadata6/text() != "" and metadata6/text() != " "]/metadata6/text()) \

for $f_affectation in $f_affectations \

return \

<Force id="{ $f_affectation }"> \

 <NomAPP6A>{ $f_affectation }</NomAPP6A> \

 <LienForceEquipement> \

{ \

let $f_allTasks:=collection("tasks")/tasks \

let $f_forceMissions:=collection("missions")/missions[metadata6=$f_affectation] \

let $f_nnos:=distinct-values(collection("tasks")/tasks[taskid > ##OLD_DATA_DELIMITER## and taskid <= ##NEW_DATA_DELIMITER##]/metadata3/text()) \

for $f_nno in $f_nnos \

let $f_nnoTasks:=collection("tasks")/tasks[metadata3=$f_nno] \

where every $f_nnoTask in $f_nnoTasks satisfies \

some $f_forceMission in $f_forceMissions satisfies \

$f_nnoTask/missionid = $f_forceMission/missionid \

return \

 <Equipement id="{ $f_affectation }_{ $f_nno }"> \

 <nno>{ $f_nno }</nno> \

 <LienTypeEquipt><refid>{ $f_nno }</refid></LienTypeEquipt> \

 <Qte_operationnelle>{ count($f_allTasks[metadata3=$f_nno and metadata11/text()='EMPL' and metadata10/text()='OPER' and taskid > ##OLD_DATA_DELIMITER## and taskid <= ##NEW_DATA_DELIMITER##]) }</Qte_operationnelle> \

 <Qte_NonOperationnelle>{ count($f_allTasks[metadata3=$f_nno and metadata10/text()!='OPER' and taskid > ##OLD_DATA_DELIMITER## and taskid <= ##NEW_DATA_DELIMITER##]) }</Qte_NonOperationnelle> \

 <GDHRapport> \

 <dateTime>{ max($f_nnoTasks/metadata6/text()) }</dateTime> \

 <Z>Z</Z> \

 </GDHRapport> \

 </Equipement> \

} \

 </LienForceEquipement> \

</Force> \

} \

</Entites>

4.2.7.2 Service orchestration with Forward SE

Many features require the use of several services, called in a specific order. The most common case is a chain of service calls: a first service is called and the resulting message is transferred to an other service. The result of the second service can be also transferred to a third service, and so on.

The Forward Service Engine (version 1.0, 12/2006) allows chaining services. For exemple, the Work Orders ("OTs") are emitted based on information from the SIL Application in Scenario 2. The Forward SE calls three services :

1. A transformation from CVS to XML,

2. A XSLT transformation, from XML to another XML format, designed to Xquare BC,

3. An insert in the database.

The Forward configuration is stored in the jbi.xml file:

<services binding-component="no">

 <provides interface-name="Forward"

service-name="{http://www.demogroup.com/celine/sil}SilEmissionOtForwardService"

 endpoint-name="silEmissionOtForwardEndpoint" />

 <petals-extensions:type>forwardServiceUnit</petals-extensions:type>

 <petals-extensions:service_0>{http://www.demogroup.com/celine/sil}SilEmissionOtCsvService</petals-extensions:service_0>

 <petals-extensions:operation_0>csvToXml</petals-extensions:operation_0>

 <petals-extensions:service_1>{http://www.demogroup.com/celine/sil}SilEmissionOtXsltService</petals-extensions:service_1>

 <petals-extensions:operation_1>xmlString</petals-extensions:operation_1>

 <petals-extensions:service_2>{http://www.demogroup.com/celine/mustmaintenance}MustmaintenanceXquareService</petals-extensions:service_2>

 <petals-extensions:operation_2>insert</petals-extensions:operation_2>

 <petals-extensions:method_2>InOut</petals-extensions:method_2>

</services>

Note : the Forward component, which has been found here so useful, has been since expanded into a fully capable light orchestrator (EIP - EIOrchestrator component).

4.2.7.3 Format transformation with CSV SE

Some applications, like SIL, need CSV files and others need XML format. In order to allow communication between the applications, the messages transferred in the bus use a common XML format. A component, CVS Service Engine (version 1.0, 12/2006), do the transformations from CVS to XML and from XML to CVS.

For exemple, in the Scenario 2, re-supply and maintenance, SIL exports "OTs" in CVS files. The new files are detected by the FileTransfer component and are transformed to XML by a service using the CVS component.

Configuration:

The CVS Service Engine has two configuration files: the jbi.xml file, who defines the service name, and a properties file, with the format parameters (including the column delimiter character).

jbi.xml:

<services binding-component="yes">

<provides interface-name="Csv"

service-name="{http://www.demogroup.com/celine/sil}SilMajUrgencesCsvService"

endpoint-name="silMajUrgencesCsvEndpoint"/>

<petals-extensions:type>csvServiceUnit</petals-extensions:type>

</services>

sil-reception-ft-cvs.properties:

csvInputMode=content

customColumnDelimiterChar=;

4.3 Scenario #3: inter-enterprises collaborative business processes

4.3.1 High-level business objectives

This scenario concerns a collaborative platform dedicated to grouped buying: partners could be buyers and/or suppliers involved into the collaborative process. This collaborative process concerns both the flow of information and the orchestration of services. This collaborative process delimitates the common part of the dynamic, including partners’ services and collaborative services. The Collaborative Information System (i.e. an ESB, adding or including, the orchestration) drives the process as a mediator of the collaboration: it performs the workflow by calling its own services so as partners’ services. The principle of the collaborative process can be seen as follows:

[image: image45.png][image: image46.png][image: image47.png][image: image48.png][image: image49.png][image: image50..pict][image: image51..pict]

This figure respects the following metamodel which is based on both, (i) the BPMN modelling notation, and (ii) the general vision of collaborative process exposed below.

[image: image5.png]
A collaborative process concerns as well services provided by the CIS as services proposed by partners of the collaboration. The CIS is in charge of the orchestration of those services. The CIS may be implemented using an ESB (natively compliant with the SOA approach the CIS concept is based on). Nevertheless, the orchestration job remains a crucial part of the collaborative process and a responsibility included in the CIS. That is why, it should be integrated in the ESB (as a choreography service for instance) or added to the ESB (as a complementary choreography layer).

In our particular scenario, the buying platform has to provide several “specific” services (such as “supplier selection”, “negotiation”) in addition to the “generic” ones (“data conversion” for instance). Partners have to host various services which will be involved in the collaborative context (such as “estimate drawing” or “deliver invoice” for suppliers, and “place orders” for customers).

4.3.2 Non-functional properties, constraints and recommendations

It is obvious that the “bigger” is the enterprise, the more powerful it is on the field of negotiation with its suppliers. According to that consideration, purchasing as a group of enterprises is a strength: it turns numerous “anonymous customers” into a significant distinctive customer. However, acting as one single organization is not an easy task:

· It is difficult to define the collaboration (roles, responsibilities).

· It is difficult to organize the collaboration (process).

· It is difficult to support the collaboration (technical interoperability).

Non-functional properties, constraints and recommendations will be presented according to these three levels, except for the CIS architecture which can be considered as a higher level constraint:

[image: image6.png]
This CIS structure respects a SOA point of view (represented by the previous metamodel) and proposes three layers:

· Service view: Services identification and localization (of partners and CIS).

· Information view: format and semantic description of the data of the collaboration as business object.

· Process view: orchestration tool in charge of the execution of the workflow.

This CIS meta-model is the basic constraint on which the following three levels of non-functional properties, constraints and recommendations will be based on.

4.3.2.1 Responsibility level

There are three kinds of partners involved into the collaboration:

· Customers: enterprises (and their information system) interested in buying.

· Suppliers: enterprises (and their information system) interested in selling.

· Collaborative Information System: mediator of the collaboration, assuming the “system of systems” homogeneity.

The CIS is obviously the heart of the collaboration whilst the main object: designing such a system is the key of this scenario. At the “responsibility level”, this objective implies that partners define altogether the general boundaries of their collaboration, including the needed services and the manipulated information:

· Partners have to identify services (among their own private services) they want (or accept) to involve into the collaboration. This action needs the description of services (only those involved into the collaboration) as the localization of these services (where, on which server, on which port, etc.).

· Partners have to build a “collaborative ontology”, that is to say, they have to define (at a semantic level) the needed and exchanged information whilst defining (at a syntactic level) which data will carry this information in their own IS.

These two points bring the knowledge required to fulfil the “service view” and the “information view” of the CIS model. Concerning our specific scenario, the first identification of services and data brings to the following result:

1. Services:

Customer: send needs, place orders, payment.

Supplier: estimate drawing, deliver products & invoice.

CIS: assemble customers’ needs, select supplier, assemble customers’ orders, and manage payment.

2. Information:

Needs, Estimate, Order, Invoice.

We will see in next section how each information have been identified by each partners as one of its own data.

4.3.2.2 Process level

Following the previous identification activity, partners have to define the behavioural aspect of their collaboration. The identified services and information have to be organized on a dynamical point of view. This is the collaborative process definition. The following diagram shows the BPMN model of this inter-enterprises process:

[image: image7.png]
Obtaining that kind of model of the collaborative behaviour is not a simple task. It implies the convergence of partners’ visions of the collaboration (consensus).

4.3.2.3 Technical level

The major constraint at this technical level concerns the SOA aspects. Building a “system of systems” based on a collaborative information system as a mediator is strongly correlated with the ability of partners’ information systems to be seen as a set of accessible services (sending and receiving data). In our scenario, it is critical that customers and suppliers use “service-oriented” information system as proper information system. On a technical point of view, we have to moderate the need of “specific connectors”: calling SOA standards seems to be a legitimate way of ensuring partners integration. The following figure shows that point of view.

[image: image8.png]
SOA deals with plugging aspects of collaboration (so the technical part) while CIS deals with interoperability aspects of collaboration.

4.3.3 Usage view

The use-case diagram hereafter shows the collaborative buying platform and the actors interacting with this collaborative information system.

[image: image9.png]
· Customer: a partner interested in using the collaborative platform in order to group its purchase needs with other buyers.

· Supplier: a partner interested in using the collaborative platform in order to sell its products to buyers or group of buyers. This actor needs to be identified by the CIS (in terms of selling specificities: product, prices, delivery time, etc.) so that the specific service of supplier selection can run its choice algorithms.

· Interoperability provider: this particular actor is the enterprise responsible for the CIS deployment, its housing and its improvement. This actor is also in charge of collaborative service design: generic service (if the enterprise already have this service at its disposal) or specific services (if it implies special development).

4.3.4 Functional requirements

Considering the previous parts (process model as well as services identification or use-cases diagram), this section will be dedicated to describing services involved in the collaboration (as far as they are strongly linked with use-cases).

· Identify own needs (customer): ability of each customer partner to describe its needs in terms of product, quantity, quality, time, cost. This service will use the catalogue of suppliers (and products) inside the collaborative buying platform in order to give the CIS the needed information to start the buying process.

· Place orders (customer): receiving final estimate (from the supplier selection service), this service send the CIS the confirmation of the buying decision.

· Pay (customer): receiving invoice (from the Manage payment service), this service send the collaborative platform the information needed for payment so that the CIS can deal with the settlement procedure.

· Respond to supplier selection service (supplier): ability of each supplier to define its selling characteristics according to the criteria needed by the supplier selection service. This service is practically in charge with negotiating with the CIS in order to give the “best picture” (in conformity with the inputs necessary for the selection service) so that the supplier can be selected.

· Deliver invoice (supplier): receiving grouped orders from the CIS (indirectly from customers), this service sends global invoices to the Manage payment service of the CIS.

· Assemble customers’ needs (CIS): receiving individual needs from customers, the CIS uses this specific service to group purchase needs of partners in order to create global needs. This overall demand is transmitted to the Select supplier service in order to choose the right supplier(s).

· Select supplier (CIS): receiving global needs, this service asks suppliers to define its selling characteristics (cf. Respond to supplier selection service) and uses one (or several) selection method to choose the right supplier(s). If negotiation may be introduced in the grouped buying process, this service will be in charge with that responsibility.

· Create estimate (CIS): Based on suppliers characteristics, the CIS draws estimates for customers.

· Assemble customers’ orders (CIS): receiving orders from customers (based on the transmitted estimates), the CIS builds the global order dedicated to the selected supplier(s).

· Manage payment (CIS): this CIS service allows customers to pay their charge. This service sends individual invoices (to customers), supports the fee and controls that the global invoice is finally paid. Customers pay their bill through the CIS.

4.3.5 Functional architecture design

Based on the generic SOA architecture shown in section 4.3.2, and thanks to the knowledge about the collaborative buying platform presented previously all over the section 4.3 and embedded into the model of collaborative process in BPMN, it is possible to automate the CIS logic model design.

4.3.5.1 Model transformation

This automated transformation is based on model morphism. The general principle is the following:

· The BPMN model of the collaborative process is extracted in XML format,

· Morphism rules (based on collaborative process metamodel and CIS metamodel) are operated in order to infer an XML file representing CIS elements,

· The obtained XML file is imported into an UML tool in order to be viewable.

There are two crucial points in this general principle of “model translation”. The first one concern the definition of translation rules. These ones have been proposed according to different criteria: skill of expert, ESB target and essentially the links between information system and process in the general framework of enterprise modelling (CIMOSA for instance). The second one concern the software tools that can be used.

4.3.5.2 Technical solution for model transformation

The following picture illustrates the global architecture of the tool that has been built. It is based on three components: intaglio designer© to model process, ATL© for translation rules execution between models based on known metamodels and TopCased© for UML model visualization.

[image: image10.png]
It is noticeable that an UML profile dedicated to SOA context has been added into the transformation mechanism in order to obtain a semantically richer model of the CIS.

This structure is concretely compliant with model-driven design principles. In fact, this transformation approach is based on MDA: the CIM (Computer Independent model is the BPMN collaborative process model and the PIM (Platform Independent Model) is the obtained UML logic CIS model.

4.3.5.3 Result of the transformation

The following figure shown the exactly logic model of the CIS obtained through the automated transformation of the previously presented BPMN collaborative process.

[image: image11.png]
Two points are noticeable here:

· The stereotype inherited from the SOA UML profile are included into the previous model,

· In the mentioned MDA context, the transition from PIM to PSM (Platform Specific Model) is obviously the next step of this work. Furthermore, the global objective of JOnES project is to provide a distributed architecture of an ESB on which it might be pertinent to project the previous logic architecture. That is to say, JOnES may provide suitable PM (Platform Model).

4.3.6 Perspectives

The aim of this part of the deliverable is then to present perspectives concerning the identification and the deduction of “configuration artefacts” that allow the deployment of the ESB to support one specific collaborative process. This work is a PIM to PSM transformation in the MDA vocabulary.

4.3.6.1 Transition from PIM to PSM

It is a transformation from a logical model (describing Service-Oriented Architecture of the information system) to a technical model (describing the implementation of the final solution that supports the collaboration). As shown in the following figure, this transformation can not be fully automatic: The intervention of an external part is needed to inject technical information about services (operations, partner links, endpoints, etc.) and exchanged messages (structures and formats). A ServiceEndpoint represents an address where a service provided by a partner can be found.

[image: image12.png]
4.3.6.2 Basics of PIM2PSM transformations
To clearly show our propositions, let us consider a generic example of collaborative process. In this example, two partners collaborate by providing two accessible business services. The Collaborative Information System (CIS) plays the role of orchestrator but provides also a third service (called CIS service).

[image: image13.png]
We have developed a transformation tool to obtain a SOA model of the collaboration modelled. This model contains logical knowledge about how the collaborative information system is structured: What kind of services are needed from partners ? What is the synchronization of services execution ? What kind of data linked to services ?
The next step that we propose is a manual intervention of partners (figure 3) to fix by their self the technical services (endpoints, operations and structure of messages) that can be provided and according to the logical architecture. We have to correspond business services description with information about the real implementation of the services (end point and used operation of the service). A description of the exchanged messages must also be provided (XSD schemas).

[image: image14.png]
A Graphical User Interface (GUI) can be developed to help the user to do this step. At the end, an xml file can be generated. An example of this xml file according to the presented collaborative process is presented bellow:
<?xml version="1.0" encoding="UTF-8"?>
<correspondances>
<correspondance>
<logicalService>Service 1</logicalService>
<category> web service </category>
<endpointService> http://endpoint1</endpointService>
<operationName>operation1</operationName>
<inputMessage> ob1.xsd </inputMessage>
<outputMessage> ob2.xsd </outputMessage>
</correspondance>
<correspondance>
<logicalService>Service 2</logicalService>
<category> web service </category>
<endpointService> http://endpoint2</endpointService>
<operationName>operation2</operationName>
<inputMessage> ob2.xsd </inputMessage>
<outputMessage> ob3.xsd </outputMessage>
</correspondance>
<correspondance>
<logicalService> CIS Service </logicalService>
<category> java application </category>
<endpointService> internal endpoint</endpointService>
</correspondance>
</correspondances>
The collaborative process has now to be deployed according to the JOnES ESB architecture. Using ATL Model Transformations (MT) that receive as inputs the xml file of the previous step and the generated UML model (SOA), a set of artefacts needed to configure the ESB to support the collaborative process can be generated:
For each collaborative process, we can obtain using MT:
1. a BPEL file of the execution of the collaborative process can be generated using the SOA model. The process view contains all the needed synchronization elements: sequence, flow, pick, etc. The provided services endpoints and operations (xml file) allow the generation of a direct deployable BPEL file.
2. A WSDL file of the collaborative process: the process can be seen as a global service that receives a request and send an answer as output. The BPMN ‘start event’ and ‘end event’ can be useful to determine the structure of this file.
3. A jbi.xml file to configure the deployment of the BPEL execution engine (orchestra) in the JBI environment.
These files are necessary to configure the Service Engine (SE orchestra) that supports the execution of BPEL processes. A specific Service Unit (SU) will be configured according to the generated BPEL and WSDL files of the process.

For each external partner service, we can obtain using MT:

1. A jbi.xml file to configure a Service Unit component that allows the definition of an internal endpoint address to the JBI environment to exchange with the external web service. A wsdl file is directly provided from the technical services user specification.

2. A jbi.xml file to configure the Service Assembly component that assemble different deployed SU.

3. Finally, a jbi.xml file to configure the Binding Component (BC). In the example, The BC is of type SOAP-BC because it links with a web-service.

In the example, we suppose that a java application directly managed by the CIS is invoked in the collaborative process (use CIS service). For each internal CIS service, we can obtain using MT:
1. A jbi.xml file to configure a Service Engine that represent the added-value service: java application (SE-CIS-POJO component) in this example.

2. A wsdl file is generated to allow the internal access to the component (seen as an internal service).

Finally an ANT file (xml file) can be generated to deploy all kind of components needed to implement the process using the ESB. The next picture shows the needed artefacts that can be generated using MT mechanisms according to the example presented.
[image: image15.png]
4.4 Scenario #4: demonstration of business service orchestration by using a BPEL standard-based
4.4.1 Context

4.4.1.1 The emergence of BPM

Scenario #4: demonstration of an orchestration of business services by using a BPEL standard-based

orchestration engine
Ten years ago, groupware bundled with email and calendar applications helped track the flow of work from person to person within an organization. Workflow in today's enterprise means more monitoring and orchestrating massive systems. A new technology called Business Process Management, or BPM, helps software architects and developers design, code, run, administer, and monitor complex network-based business processes.

Possible motivations for choosing BPM include the following such as formalize existing processes and spot needed improvements, facilitate automated, efficient process flows.

BPM complements Service Oriented Architecture (SOA), a method for designing, running and monitoring agile information systems, and Enterprise Service Bus (ESB) for integrating different (web) services, messaging, and XML technologies into a single network. BPM is to this collection of services what a conductor is to musicians in an orchestra: it coordinates their actions in the performance of a larger composition.

4.4.1.2 The BPEL standard

The Business Process Execution Language or BPEL is one of the BPM standards, pushed by the major software companies such as IBM, Microsoft and BEA, and subsequently standardized by the WSBPEL technical committee of the OASIS organization (http://www.oasis-open.org/committees/wsbpel).

BPEL runtime engine

BPEL is an XML-based language for the formal specification of business processes and business interaction protocols. BPEL extends the Web Services interaction model and enables it to support business transactions. It ways to code rigorous processes that are centrepieces of a service-oriented architecture (SOA), which defines how networks interact so that one can perform a service for the other. BPEL is the BPM’s most popular language, represents a process as XML, with web services bindings, and provides standard for BPM runtime engine (BPEL engine).

In the BPEL approach, the process not only interacts with other (web) services, it is itself a (web) service. For BPM technical architects, this feature means that the BPEL runtime engine knows how to accept an inbound message, inject it into the engine, obtain the response, if any, and send it back out as an outbound message.

A BPEL process definition consists of two types of files:

· Web Services Definition Language (WSDL) files specifying the (web) services interfaces –partner link types, properties, port types and operations, message and part-of interest to the process

· BPEL files, encoding in XML form the definition of the process, including its main activities, partner links, correlation sets, variables, and handlers for compensation, faults and events

When combined, the WSDL and BPEL form a control flow that can act as an interface with external parties through (web) services.

The “YellowPage” Booking process orchestrates the Hotel and Restaurant services

4.4.1.3 Orchestration

In the BPM approach, “orchestration” and “choreography” of (web) services are distinguished. Both concepts imply coordination or control – the act of making individual (web) services work together to form some coherent overall process. Orchestration refers to coordination at the level of a single party process, at runtime level, whereas choreography refers to the global view involving multiple parties and multiple sources at design level.

Developing the (web) services and exposing their functionality is not sufficient. We also need a way to orchestrate this functionality in the right order to perform a business process. (Web) services orchestration must be flexible and adaptable to meet the changing needs of a business. Flexibility can be achieved by a clear separation between the business and process logic and the (web) services used.

To this effect, BPEL enables the automated coordination and management of composite application components that participate in a business process. (Web) services are described in WSDL therefore BPEL works with WSDL descriptions. All operations are message exchanges and each operation represents an individual unit of action. BPEL is a way to orchestrate these operations with multiple (web) services by providing sequencing and conditional behaviour.

4.4.2 Demonstrator V1: WebService Orchestration with BPEL

The application is composed by three web services and one BPEL process. In order to separate Business functionalities from Technical functionalities, a solution is to access Business services only through Proxy services (Booking, RestaurantBooking and HotelBooking). In this case only the WSDL interfaces of Proxy services (Booking, RestaurantBooking and HotelBooking) are available from the BPEL designer point of view. If WSDL interface from business services evolves then we have only to perform transformation logic into the proxy services.
4.4.2.1 BPEL process and web services

 The HotelBooking Service
The WSDL file for this service defines the Hotel port type, which implements the operation bookHotel. The operation returns three informations :

· a boolean indicating the booking operation success (bookingResult)

· a integer giving the booking cost (bookingPrice)

· a user-friendly message (returnedMessage)

 The RestaurantBooking Service

The WSDL file for this service defines the Restaurant port type, which implements the operation bookRestaurant. The operation returns three informations :

· a boolean indicating the booking operation success (bookingResult)

· a integer giving the booking cost (bookingPrice)

· a user-friendly message (returnedMessage)

 The Booking Service

The WSDL file for this service defines the Booking port type, which implements the operation booking. The operation returns three informations :

· a boolean indicating the whole booking operation success (bookingResult)

· a integer giving the total booking cost (bookingPrice)

· a user-friendly message (returnedMessage)

4.4.2.2 Developing the Booking BPEL Process

 Example of the BPEL process

<process name="Booking"

 targetNamespace="https://wiki.objectweb.org/ESBi"

 queryLanguage="http://www.w3.org/TR/1999/REC-xpath-19991116"

 expressionLanguage="http://www.w3.org/TR/1999/REC-xpath-19991116"

 xmlns:p5416="https://wiki.objectweb.org/ESBi"

 xmlns:bpws="http://schemas.xmlsoap.org/ws/2003/03/business-process/"

 xmlns="http://schemas.xmlsoap.org/ws/2003/03/business-process/">

<partnerLinks>

 <partnerLink name="Booking"

 myRole="service"

 partnerLinkType="p5416:BookingService"/>

 <partnerLink name="HotelBooking"

 partnerRole="service"

 partnerLinkType="p5416:HotelBookingService"/>

 <partnerLink name="RestaurantBooking"

 partnerRole="service"

 partnerLinkType="p5416:RestaurantBookingService"/>

</partnerLinks>

<variables>

 <variable name="bhResponse" messageType="p5416:bookHotelResponse"/>

 <variable name="bhRequest" messageType="p5416:bookHotelRequest"/>

 <variable name="bResponse" messageType="p5416:bookResponse"/>

 <variable name="bRequest" messageType="p5416:bookRequest"/>

 <variable name="brRequest" messageType="p5416:bookRestaurantRequest"/>

 <variable name="brResponse" messageType="p5416:bookRestaurantResponse"/>

</variables>

 <sequence>

 <receive partnerLink="Booking"

 portType="p5416:Booking"

 operation="book"

 variable="bRequest" createInstance="yes">

 </receive>

 <assign>

 <copy>

 <from variable="bRequest" part="parameters" query="/roomNumber"/>

 <to variable="bhRequest" part="parameters" query="/roomNumber"/>

 </copy>

 <copy>

 <from expression="''"/>

 <to variable="brRequest" part="parameters" query="/promoCode"/>

 </copy>

 </assign>

 <invoke partnerLink="HotelBooking"

 portType="p5416:HotelBooking"

 operation="bookHotel"

 inputVariable="bhRequest"

 outputVariable="bhResponse">

 </invoke>

 <switch>

 <case condition="bpws:getVariableData('bRequest', 'parameters','/isRestaurant')">

 <sequence>

 <invoke partnerLink="RestaurantBooking"

 portType="p5416:RestaurantBooking"

 operation="bookRestaurant"

 inputVariable="brRequest"

 outputVariable="brResponse">

 </invoke>

 <assign>

 <copy>

 <from expression="bpws:getVariableData('bhResponse', 'parameters','/bookHotelReturn/bookingResult') and bpws:getVariableData('brResponse', 'parameters','/bookRestaurantReturn/bookingResult')"/>

 <to variable="bResponse" part="parameters" query="/bookingResult"/>

 </copy>

 <copy>

 <from expression="bpws:getVariableData('bhResponse', 'parameters','/bookHotelReturn/bookingPrice') + bpws:getVariableData('brResponse', 'parameters','/bookRestaurantReturn/bookingPrice')"/>

 <to variable="bResponse" part="parameters" query="/bookingPrice"/>

 </copy>

 <copy>

 <from expression="concat(bpws:getVariableData('bhResponse', 'parameters','/bookHotelReturn/returnedMessage'),' - ',bpws:getVariableData('brResponse', 'parameters','/bookRestaurantReturn/returnedMessage'))"/>

 <to variable="bResponse" part="parameters" query="/returnedMessage"/>

 </copy>

 </assign>

 </sequence>

 </case>

 <otherwise>

 <assign>

 <copy>

 <from variable="bhResponse" part="parameters" query="/bookHotelReturn/bookingResult"/>

 <to variable="bResponse" part="parameters" query="/bookingResult"/>

 </copy>

 <copy>

 <from variable="bhResponse" part="parameters" query="/bookHotelReturn/bookingPrice"/>

 <to variable="bResponse" part="parameters" query="/bookingPrice"/>

 </copy>

 <copy>

 <from expression="concat(bpws:getVariableData('bhResponse', 'parameters','/bookHotelReturn/returnedMessage'),' - No restaurant booked')"/>

 <to variable="bResponse" part="parameters" query="/returnedMessage"/>

 </copy>

 </assign>

 </otherwise>

 </switch>

 <reply partnerLink="Booking"

 portType="p5416:Booking"

 operation="book"

 variable="bResponse">

 </reply>

 </sequence>

</process>

 Detailed view of the BPEL process

The services, which a business” process interacts with, are modeled as partner links in BPEL. Each partner link is characterized by a partnerLinkType. More than one partner link can be characterized by the same partnerLinkType.

<partnerLinks>

 <partnerLink name="Booking"

 myRole="service"

 partnerLinkType="p5416:BookingService"/>

 <partnerLink name="HotelBooking"

 partnerRole="service"

 partnerLinkType="p5416:HotelBookingService"/>

 <partnerLink name="RestaurantBooking"

 partnerRole="service"

 partnerLinkType="p5416:RestaurantBookingService"/>

</partnerLinks>

the following BPEL variable declarations:

<variables>

 <variable name="bhResponse" messageType="p5416:bookHotelResponse"/>

 <variable name="bhRequest" messageType="p5416:bookHotelRequest"/>

 <variable name="bResponse" messageType="p5416:bookResponse"/>

 <variable name="bRequest" messageType="p5416:bookRequest"/>

 <variable name="brRequest" messageType="p5416:bookRestaurantRequest"/>

 <variable name="brResponse" messageType="p5416:bookRestaurantResponse"/>

</variables>

A business process provides services to its partners through receive activities and corresponding reply activities. A receive activity specifies the partner link it expects to receive from, and the port type and operation that it expects the partner to invoke. In addition, it may specify a variable that is to be used to receive the message data received.

<sequence>

<receive partnerLink="Booking"

 portType="p5416:Booking"

 operation="book"

 variable="bRequest" createInstance="yes">

 </receive>

 The example illustrates copying one variable to another as well as copying a variable part to a variable of compatible element type:

 <assign>

<copy>

 <from variable="bRequest" part="parameters" query="/roomNumber"/>

 <to variable="bhRequest" part="parameters" query="/roomNumber"/>

 </copy>

 <copy>

 <from expression="''"/>

 <to variable="brRequest" part="parameters" query="/promoCode"/>

 </copy>

 </assign>

 Web Services provided by partners can be used to perform work in a BPEL business process. Invoking an operation on such a service is a basic activity. An operation can be a synchronous request/response or an asynchronous one-way operation but BPEL uses the same basic syntax for both.

 <invoke partnerLink="HotelBooking"

 portType="p5416:HotelBooking"

 operation="bookHotel"

 inputVariable="bhRequest"

 outputVariable="bhResponse">

 </invoke>

BPEL brings <switch> construct which allows to select exactly on branch of activity from a set of choices.

 <switch>

 <case condition="bpws:getVariableData('bRequest', 'parameters','/isRestaurant')">

 <sequence>

 <invoke partnerLink="RestaurantBooking"

 portType="p5416:RestaurantBooking"

 operation="bookRestaurant"

 inputVariable="brRequest"

 outputVariable="brResponse">

 </invoke>

 <assign>

 <copy>

 <from expression="bpws:getVariableData('bhResponse', 'parameters','/bookHotelReturn/bookingResult') and bpws:getVariableData('brResponse', 'parameters','/bookRestaurantReturn/bookingResult')"/>

 <to variable="bResponse" part="parameters" query="/bookingResult"/>

 </copy>

 <copy>

 <from expression="bpws:getVariableData('bhResponse', 'parameters','/bookHotelReturn/bookingPrice') + bpws:getVariableData('brResponse', 'parameters','/bookRestaurantReturn/bookingPrice')"/>

 <to variable="bResponse" part="parameters" query="/bookingPrice"/>

 </copy>

 <copy>

 <from expression="concat(bpws:getVariableData('bhResponse', 'parameters','/bookHotelReturn/returnedMessage'),' - ',bpws:getVariableData('brResponse', 'parameters','/bookRestaurantReturn/returnedMessage'))"/>

 <to variable="bResponse" part="parameters" query="/returnedMessage"/>

 </copy>

 </assign>

 </sequence>

 </case>

BPEL introduces several extension functions to XPath's built-in functions to enable XPath 1.0 expressions to access information from the process. The extensions are defined in the standard BPEL namespace "http://schemas.xmlsoap.org/ws/2003/03/businessprocess/" . The prefix "bpws: " is associated with this namespace. For example, getVariableData('bhResponse', 'parameters', '/bookHotelReturn/returnedMessage'?) function extracts data values from variables. The following expression concates results from hotelbooking and a text.

 <otherwise>

<assign>

 <copy>

 <from variable="bhResponse" part="parameters" query="/bookHotelReturn/bookingResult"/>

 <to variable="bResponse" part="parameters" query="/bookingResult"/>

 </copy>

 <copy>

 <from variable="bhResponse" part="parameters" query="/bookHotelReturn/bookingPrice"/>

 <to variable="bResponse" part="parameters" query="/bookingPrice"/>

 </copy>

 <copy>

 <from expression="concat(bpws:getVariableData('bhResponse', 'parameters','/bookHotelReturn/returnedMessage'),' - No restaurant booked')"/>

 <to variable="bResponse" part="parameters" query="/returnedMessage"/>

 </copy>

 </assign>

 </otherwise>

 </switch>

 A reply activity is used to send a response to a request previously accepted through a receive activity. A reply activity may specify a variable that contains the message data to be sent in reply.

 <reply partnerLink="Booking"

 portType="p5416:Booking"

 operation="book"

 variable="bResponse">

 </reply>

Graphical representation of the booking BPEL Process

4.4.2.3 Demonstration context: "booking" service sample

 The demonstration deals with a "booking" service. This service allows booking a given number of rooms and optionally a restaurant too. From a client point of view, the booking service appears as a black box, taking a room number and a restaurant booking option as input, and returning a booking result with a price and a text-message.

4.4.2.4 Architecture of the "booking" service

The following schema shows what is behind the "Booking" web page that appears in clients’ browsers:

Client's browser calls a servlet, which calls a "Booking" Web-Service. This "Booking" Web-Service is deployed inside a BPEL engine. Only the WSDL file and the BPEL description have been provided, as the WS implementation is generated by the BPEL engine. The "Booking" Web-Service invokes itself two other WS, which are "HotelBooking" and "RestaurantBooking".

4.4.3 Demonstrator V2: BPEL Orchestration of simple WebService and business service exposed as WebService

In the first demonstrator, we have introduced some technical notions like BPEL, WSDL, process, (Web) services, and orchestration.

The aim of this demonstrator was to show the agility offered by BPEL orchestration.

We will now introduce a new software component into the architecture: an ESB Bus

by orchestrating webservice and business service exposed by an ESB, thanks to a BPEL engine.

4.4.3.1 New architecture of the "booking" service

The following schema shows what is behind the "Booking" web page that appears in the clients' browsers:

The booking service’s principle is still the same, but we have added a new business service (SendMail) exposed by PEtALS, which will be orchestrated like any webservice.

The SendMail service offers the "sendMail" operation, its input being an email address (emailAddress). It returns a concatenation of returned messages for bookRestaurant and bookHotel at the specified email address (emailContent).

4.4.3.2 Added value of integrating an ESB

4.4.3.2.1 What is PEtALS ?

PEtALS is the highly distributed Open Source ESB hosted by OW2. PEtALS delivers the OW2 Java TM Business Integration (JBI) platform.

To promote such an architecture, PEtALS implements the Java(tm) Business Integration specification (JSR 208). J.B.I. describes a "Service Component" approach.

Components are elements that offer services. Those Components are plugged on a JBI container. Services they expose are accessible through Endpoints.

Each consumer-component can request the JBI container to find a service. The JBI container gives to the consumer the corresponding Endpoint. Then, the consumer sends a message to the service-provider thanks to this Endpoint.

The JBI specification is strongly based on WSDL. Thus, each Component has to provide a WSDL description of the services it exposes. That's why PEtALS services are BPEL compliant.

4.4.3.2.2 Why use PEtALS?

As said before, PEtALS can either expose webservice or business service by providing an endpoint in every case.

Using PEtALS allows us to orchestrate webservice and other business services exposed with other protocols as well, and stay implementation language agnostic since we just deal with exposed interfaces.

4.4.4 Demonstrator V3: ESB embedded Orchestration of Webservice with database persistence

4.4.4.1 Goals

This demonstrator has several goals:

· Migrate from BPEL 1.1 to BPEL 2.0

· Use an orchestration engine as an ESB component (Service Engine)

· Show the agility of BPEL and PEtALS, by integrating a new service such as persistence functionality

· Distribute the software on several servers (multi-tiers application: DataBase, GUI, MailServer, ESB)

· Make a full deployment of the application and components

For this demonstrator, we use a deployment framework to install, start PEtALS, and all its components and dependencies: FDF (Fractal Deployment Framework).

Here’s a screenshot of our FDF architecture

[image: image16.png]
As we can see, we have to specify hosts, software to install, where to install them, and their dependencies.

4.4.4.2 Distributed Architecture

The demonstrator architecture is illustrated below.

It is a distributed architecture with five servers (surrounded by red rectangles in the figure above):

· A DataBase server

· An Application Server which exposes WebService

· A Mail Server

· An ESB server and its components

· the Orchestrator Service Engine based on Nova Orchestra

· three Binding Components

· one based on XQuare, which makes the data persist

· the SOAP one, which allows external WebService access

· the Mail one, which allows the binding with an external mail server in order to send mail.

· A client machine which launches the GUI

4.4.4.3 Booking BPEL Process

Principle: The user fills in three text fields in the GUI. Then the orchestration engine, according to the behaviour defined in the BPEL, processes the data.

On the figure bellow, we can see how the process is defined at a high level. The figure shows a graphical representation of the BPEL process.

We use Eclipse BPEL plug-in that offers compatibility BPEL 2.0 specification.

There are four main actions:

· HotelBooking, which books a hotel calling an external WebService through the bc-soap.

· RestaurantBooking, which books a restaurant (according to the user selection) calling an external WebService through the bc-soap.

· RecordingInfo, which persists the data to a database through the bc-Xquare

· SendMail, which sends a mail (according to the user selection) through the bc-mail

The definition, development and the way the BPEL is defined is still the same as described on 4.4.2, 4.4.2.1, and 4.4.2.2 sections.

4.4.4.4 Conclusion

We have a demonstrator gathering different components and which enables a multi-tiers application, involving:

· Deployment

· Orchestration

· Web-Service call

· Persistence

Thanks to PEtALS ESB, every business component can easily be added to the bus, also to the orchestration, since every component is loosely coupled.

5 ESB PRODUCT ANALYSIS

5.1 BEA Aqualogic Service Bus (ALSB)

This section presents extracts from the BEA technical documentation accessible at the following URL:

· http://edocs.bea.com/alsb/docs25/index.html
5.1.1 Product strategy

BEA merges the concepts of ESB, message brokering, and Web Services Management (WSM) into a single product, AquaLogic Service Bus (ALSB).

BEA's ALSB aims at providing SOA infrastructure on top of multiple J2EE servers and Microsoft's .NET. However, today, ALSB runs on BEA WebLogic Server and its Java Message Service (JMS) messaging backbone (the ALSB broker is internally asynchronous). Consequently, the service bus and its messaging backbone are tight to BEA WebLogic.

ALSB is currently not a distributed ESB solution. It therefore targets applications that do not need high brokering rates, such as provisioning applications.

BEA has developed an interoperability solution for BEA Tuxedo. Tuxedo can access ALSB domains, and ALSB can access Tuxedo domains.

 SHAPE

[image: image17]

BEA is bundling and making available for the first time WebLogic Integration with BEA ALSB. The combined offering is branded BEA AquaLogic Integrator. It provides tools to service enable and integrate business services in SOA with minimal change impact on service availability.

The figure above (see http://edocs.bea.com/alsb/docs25/concepts/overview.html) gives an overview of the BEA complete integration solution.

5.1.2 ESB definition

BEA AquaLogic Service Bus is defined as a core element of distributed services networks, enabling service-oriented architectures. It is presented as an intermediary that takes in messages, processes them to determine where to route them, and transforms them as specified. It receives messages through a transport protocol such as HTTP(S), JMS, File, FTP, etc., and sends messages through the same or a different transport protocol. Message response follows the inverse path.

AquaLogic Service Bus is policy driven. This allows a particular form of loose coupling between service consumers and service providers, while ALSB maintains a centralized point of security control and monitoring.

5.1.3 SOA scenarios

BEA has identified the following routing scenarios. The first scenario demonstrates how a proxy service representing a service consumer on the bus can be invoked using different transports. In this scenario, a set of front-end proxy services (one service per transport) route messages to a shared local transport proxy service.

The second scenario demonstrates how SOAP or XML type proxy service acts as a front-end to different enterprise systems. In this scenario, the front-end proxy service is acting as a generic router with little knowledge of the enterprise systems or the message formats and semantics. This front-end proxy service can receive messages in a variety of formats and uses a technique common to all these messages (for example, a WS-Addressing SOAP header) to route the messages to an appropriate local transport proxy service.

These two scenarios can be implemented using ALSB.

For more information, see the URL:

 http://e-docs.bea.com/alsb/docs25/userguide/localTransport.html#wp1074321.

5.1.4 Patterns

This section presents the interaction styles and the mediation categories implemented in ALSB.

5.1.4.1 Interaction

ALSB supports the following messaging models:

· Request/response;

· Asynchronous/synchronous;

· Publication/subscription.

5.1.4.2 Mediation

ALSB provides basic mediations that are categorized as follows:

· Communication. Examples: "Service call out" gathers additional data from a registered ALSB service (proxy or business service, see Section 5.1.5.2); "Java Callout" invokes a Java method, or EJB business service. "Publish", "Publish table" and "Dynamic Publish" are routing mediations. "Publish table" allows different routes to be selected based on the results of a single XQuery expression. "Dynamic Publish" publishes a message to a service specified by an XQuery expression.

· Flow control. Example: "It…Then…" performs an action or set of actions conditionally, based on the Boolean result of an XQuery expression; "Raise Error" raises an exception with a specified error code (a string) and description.

· Message processing. Examples: "Insert" (message enrichment) inserts the result of an XQuery expression at an identified place relative to nodes selected by an XPath expression; "MFL Transform" converts non-XML to XML or XML to non-XML; "Validate" validates elements selected by an XPath expression against an XML schema element or a WSDL resource.

· Reporting. Examples: "Alert" sends an alert notification based on the content of an ALSB environment variable; "Log" constructs a message to be logged; "Report" enables message reporting for a proxy service.

BEA mediations operate on request and response messages. Mediations are grouped together into stage components where they are executed sequentially. Practice shows that designing, assembling and configuring mediations using the ALSB administration GUI become fastidious as soon as the mediation logic gets complex. Note that most configuration tasks require the knowledge of XPath, XQuery, and the structure of ALSB environment variables.

For more information, see the URL:

 http://e-docs.bea.com/alsb/docs25/userguide/localTransport.html#wp1074321.

5.1.5 Product architecture overview

5.1.5.1 ESB subsystems

As shown in the figure hereafter, ALSB is composed of the following subsystems: service management, message brokering, configuration framework, security, and transport and messaging protocols.

[image: image18.png]
5.1.5.2 Service Brokering module

ALSB provides message brokering between service providers and service consumers through proxy services. Proxy services are ALSB definitions of intermediary Web services that are hosted locally on ALSB. Service consumers exchange messages with an intermediary proxy service, while service providers interact with business services that are ALSB definitions of the service providers.

The roles of a functional proxy service are to enforce access control, and to perform any transformation of the messages required to invoke the target business service. The message processing is driven by metadata specified as the message flow definition for a proxy service. Mediations are part of the implementation of a message flow.

Proxy services and business services are characterized by an interface, the type of transport they use, their security requirements, and other characteristics. A proxy service can have an interface that is identical to a business service with which the proxy service communicates, or the proxy service can have an interface that differs from that of the business service. ALSB uses WSDL (Web Service Definition Language) to describe proxy services and business services.

The figure hereafter shows an overview of the Service Brokering module interacting with the application environment.

[image: image19.png]
In ALSB, there are two categories of proxy services—the proxy services of first category are invoked directly by the clients; those of the second category are invoked by other proxy services in the message flow, as pictured in the figure below.

[image: image20.png]
ALSB enables the administrator to configure the message flow to format and return error messages. Errors can occur during message flow processing for various reasons. For example, security errors occur if a username is not correctly validated or authorized; transformation errors occur if ALSB is unable to successfully transform or validate a message; a routing error is raised if a routing service is unavailable.

5.1.5.3 Transport and messaging protocols module

Proxy and business services use different transport protocols. The transport protocol used depends on the type of service, the type of authentication required, the type of the invoking service, etc. The transport protocols supported by ALSB include:

· E-mail (POP/SMTP/IMAP)

· EJB. ALSB business services can be designed to use the EJB transport.

· File

· FTP

· HTTP(S)

· JMS (including MQ using JMS, and JMS/XA)

· Local. A proxy service invoked by another proxy service use a transport protocol called the local transport.

· Tuxedo. BEA AquaLogic Service Bus and BEA Tuxedo can inter-operate to use the services that they offer.

· ALSB supports the following message formats:

· E-mail with or without attachments

· JMS with headers

· MFL (Message Format Language)

· Raw Data. Raw data is opaque data—that is, non-XML data for which there is no MFL file and therefore no known schema

· Text

· SOAP and SOAP with attachments (SOAP that is or is not described by a WSDL)

· XML and XML with attachments ((XML that is or is not described by a WSDL or a schema)

[image: image21.png]
The processing of messages occurs in the following sequence of events, as pictured in the figure above:

· Processing of the inbound transport.

· Message flow execution.

· Processing of the outbound transport.

5.1.5.4 Service bus security module

ALSB relies on the WebLogic Server security at several levels, but also provides its own administrative security and inbound security.

ALSB defines its own pre-defined security roles that give administrative privileges. Administrative security uses the user, group, and role data to determine which authenticated users are authorized to create or modify ALSB configuration data or to monitor ALSB performance. ALSB user management is built on the WebLogic Server security framework.

ALSB also provides inbound transport-level security and message-level security. They use the user, group, and role data and apply access control policies to determine which authenticated users are authorized to use proxy services and business services. An access control policy specifies conditions under which users, groups, or roles can access a proxy service (for example, a category of users can only access a proxy service after 12pm).

Transport-level access policies perform a security check when a consumer attempts to establish a connection with the proxy service. Only requests from users who are listed in the transport-level policy are allowed to proceed.

Message-level access policies perform a security check when a consumer attempts to invoke one of the secured operations. Only users who are listed in the message-level policy are allowed to invoke the operation.

The Security Configuration module allows the administrator to create and modify security data that is used in ALSB administrative security and inbound security.

The ALSB embedded LDAP can be used to process security. It aims at:

· Authenticating service consumers;

· Authorizing service consumers to access services.

In version 2.1, ALSB supports the following security capabilities:

Transport-level security (HTTP, HTTPS, and JMS transport protocols):

· Authentication

· HTTP basic authentication: one-way authentication (the user name and the password are transmitted without encryption)

· HTTPS authentication using SSL (Secure Sockets layer):

· One-way certificate based authentication: both the consumer and the broker have certificates

· Mutual certificate based authentication (reciprocal trust relationships between consumer/broker, and broker/provider): the consumers, the providers and the broker all have certificates

· JMS authentication:

· Basic password authentication

· SSL authentication

· Third-party authentication: ALSB supports security services provided by integrated third-party providers, including BEA AquaLogic Enterprise Security.

· Authorization

· User management: task-level authorization based on security policies associated with roles assigned to named groups or individual users.

· SSL: user certificate authorization.

· Confidentiality

· SSL: the data traffic is encrypted (any sensitive data: user name/password, etc.). The message remains private even if it is intercepted.
· Integrity

· SSL: each message is signed digitally, which ensures that the content of the message cannot be altered during transmission without the receiver knowing that tampering has occurred.

Message-level security:

· Authentication/ Confidentiality / Integrity

· WS-Security 1.0: authentication using tokens, encryption and decryption, and digital signatures as defined in the Web Services Security specification.

· Authorization

· User management (task-level authorization).

Authentication and authorization data propagation:

· SAML Token Profile 1.0:

· Identity propagation: the consumer identity is propagated in a SAML token inside the WS-Security security header included in the SOAP message.

· Credential mapping: the consumer authenticates to ALSB through one of the supported authentication mechanisms, and the proxy service propagates the consumer identity to the back-end service using an SAML assertion

· Authorization propagation:?

Security level management (security level between the consumer and the broker versus security level between the broker and the provider):

· Information not available

ALSB security also uses the WS-Policy specification in order to associate Web Service security policy with proxy services and business services. WS-Policy describes what should be signed or encrypted in a message and what security algorithms should be applied. It also describes the authentication mechanism that should be used for the message when the message is received.

For all proxy services, it is possible to create a transport-level policy. For proxy services that are Web services and include at least one WS-Policy statement that requires authentication for a Web service operation, a message-level policy can also be created.

ALSB supports the application of security policy by either applying policy to messages the bus is mediating, or supporting simple pass-through of service end-point security policy. More precisely, ALSB provides two types of inbound message security: active intermediary and pass-through:

· Active intermediary: the proxy service processes the message headers and enforces the security policy on the messages (same for the response).

· Pass-through: The proxy service does not process the security header; instead it passes the secured request message untouched to a business service (same for the response).

In both scenarios, the proxy service has to be configured with WS-Policy statements. These WS-Policy statements are available to clients (from the dynamic WSDL).

Note that a common security policy can be registered as a proxy service provider and applied across multiple services.

5.1.5.5 Service management module

The service management module includes the SLA management module, the reporting module and the monitoring module.

SLA management module:

ALSB Service Level Agreements (SLAs) define the precise level of service expected from the ALSB business and proxy services. SLA violations are therefore due to errors produced by a proxy service or a business service.

In ALSB, the SLA concept is a technical one. Indeed, ALSB does not manage the business aspects of a SLA contract that deals with two participants agreeing upon a set of rules. In particular, the default ALSB SLA reporting does not inform about the requester and nor does an SLA alert.

SLA specifications apply to proxy and business services and take the form of rules. Simple or multiple conditions can be defined. The available metrics depend on the configuration of the service itself. Indeed, they vary according to whether a service has pipelines, route nodes, operations, etc. SLA metrics inform about the total number of messages processed, the number of messages processed with errors, the response time (in milliseconds), etc.

When a rule evaluates to true, ALSB executes one the following action specified for the rule:

· Send E-mail notification or,

· Send a JMS message.

The ALSB Alert Manager handles rule and alert processing.

Reporting module:

ALSB enables message and alert reporting.

Message reporting must be explicitly performed by a Report action in the message flow for the proxy service. The Report action extracts information from each message (body, header, etc.) and writes it to the ALSB Reporting Data Stream with metadata that adheres to MessageReporting.xsd. Similarly, the SLA Manager writes the alert reporting stream to the Reporting Data Stream with metadata that conform to the AlertReporting.xsd.

[image: image22.png]
ALSB includes a JMS Reporting Provider for message reporting. However, it is possible to develop customized reporting providers as shown in the figure above (see http://e-docs.bea.com/alsb/docs25/userguide/reporting.html). To do this, it is necessary to implement one interface called ReportingDataHandler and use one class called ReportingDataManager. The ReportingDataHandler Interface takes the reporting or alert data stream and processes it. It can process and/or store this stream in a relational database, file, JMS queue, etc.

For more information, see the URL:

http://e-docs.bea.com/alsb/docs25/userguide/reporting.html
Monitoring module:

ALSB enables the monitoring of servers, services and alerts through a Dashboard console. The service monitoring module includes components dealing with statistics, SLA and log management (see the figure hereafter).

ALSB gives access to server names and their configuration based on various criteria (monitoring-enabled servers, critical servers, etc.). It also provides a link to server summary logs.

ALSB gives access to service names and service monitoring details. It displays the services with alerts that are gathered from the alert log. It also displays services by alert severity (normal, warning, minor, major, critical, and fatal alerts).

Finally, SLA rules can be configured to generate an alert log that is displayed on the Dashboard console.

[image: image23.png]
5.1.5.6 Service lifestyle module

The service lifestyle module includes the resource cache module and the UDDI discovery module.

Resource cache module:

The resource cache module supports the following:

· Stores information about services, schemas, transformations, WSDLs, and WS Policies;

· Provides centralized management and distributed access to resources and services;

· Allows the administrator to browse the services registered in AquaLogic Service Bus and import resources from WebLogic Workshop or other applications;

· Allows the propagation of configuration data from environment to environment (for example, from a development domain to a test domain to a production domain). The system allows environment specific settings to be overridden during import.

UDDI discovery module:

ALSB provides interoperability with UDDI registries—it is possible to publish a proxy service to and import a business service from version 3-compliant UDDI registries.

5.1.6 Infrastructure level management

AquaLogic Service Bus runs on WebLogic Server version 9.0 or greater, and takes advantage of the capabilities of the underlying WebLogic Application Server. The focus of this section is on ESB topologies, bus resource deployment, and QoS management and monitoring.

5.1.6.1 Bus topologies

ALSB can be deployed on a single WebLogic server that also serves as the administration server, or it can be horizontally scaled by clustering the underlying WebLogic Server. In both cases, ALSB is deployed as a single hub that manages the service traffic. Heterogeneous ALSB hubs can also be connected to create a distributed AquaLogic Service Bus network.

5.1.6.2 Bus resource deployment

The bus infrastructure relies on the following key resources:

· WebLogic Server Resources. WebLogic Server resources must first be installed and configured to meet well-defined QoS requirements prior deploying an ALSB solution (see Section 5.1.7.4
, "Application deployment").

· Relational Database Management System Resources. ALSB relies on database resources for storing message-reporting data by the JMS Reporting Provider. Database performance is a factor in overall ALSB performance.

· Hardware, Operating System, and Network Resources. They play a crucial role in ALSB performance

Some WebLogic Server resources are most relevant to the deployment of an ALSB solution. They can be configured from the WebLogic Server Administration Console or through J2EE and WebLogic resource descriptors. The configurable WebLogic Server features that are most relevant to ALSB deployments are:

· Clustering;

· Java Message Service;

· EJB Pooling and Caching;

· JDBC Connection Pools;

· Execution Thread Pool;

· J2EE Connector Architecture: the WebLogic J2EE Connector Architecture (JCA) integrates the J2EE Platform with one or more heterogeneous Enterprise Information Systems (EIS).

A cluster consists of a clustered set of managed WebLogic servers that perform the message processing. A domain has only one cluster and that cluster has ALSB deployed to it. There is one administration server in a clustered domain. ALSB propagates configuration and metadata automatically to the WebLogic managed servers, and it automatically collects monitoring metrics from all the managed servers for aggregation and display on the ALSB Console.

For more information, see the URL:

http://edocs.bea.com/alsb/docs25/deploy/intro.html#wp1362395
5.1.6.3 Quality of Service management

Different QoS levels can be specified on the infrastructure resources. They reflect the contractual agreements (SLA) established between the four participants (consumer/broker, broker/provider) that specify guarantees on performance, throughput and latency, hence sometimes the difficulty to derive the right QoS specification for each resource from high-level SLA specification.

ALSB provides the following QoS features:

· Delivery guarantees. ALSB supports different types of reliable messaging.

· Outbound message retries. After completing the retry attempts, if there is still an error, the error handler pipeline for the route node is invoked.

· Scalability. ALSB can scale up to a certain level by adding new cluster member and a load balancer (router).

Note that the ALSB cluster of managed servers aims at speeding up functional query processing at peak load. A specific HA architecture must be set up, when high availability is a strong requirement.

5.1.6.4 Quality of Service monitoring and controls

The ALSB management console displays system health information on the servers (server status, server name, cluster name, server state, etc.).

ALSB enables monitoring of system health by aggregating key statistics at run time, enabling visualization of real-time management information in an administrator-customized dashboard and exposing management metrics to external management systems through support of a JMX-monitoring API and SNMP alerts.

In ALSB, a Server Log Summary page presents a summary of domain log file entries. A table displays the number of messages raised by the system. The server message information is grouped according to its severity: Alert, Critical, Emergency, Error, Info, Notice, and Warning. The Server Log Details page provides details of a domain log file entry: message, date, subsystem of WebLogic Server that is the source of the message (EJB, JMS, etc.), message id, severity, user id, cause of the message, etc.

For more information, see the URL:

http://edocs.bea.com/alsb/docs25/consolehelp/monitoring.html
5.1.7 Application level management

The application level comprises all the ALSB resources involved in message routing, transformations, and security controls. The focus of this section is on the related ALSB concepts, application resources deployment, and QoS management and monitoring.

5.1.7.1 Proxy services

Using the ALSB Console, the administrator creates and configures a proxy or a business service by defining its interface and the type of transport it uses, and by configuring policies. A proxy service is also configured with the logic of message processing in message flow definitions.

5.1.7.2 Message flows

ALSB proxy services are implemented by message flows that are constructed by chaining together pipelines, branch nodes, and route nodes, as shown in the figure hereafter.

[image: image24.png]
Pipelines represent the bulk of processing logic in a message flow. Request and response pipelines are paired together into Pipeline Pair nodes. The request pipeline definition specifies the actions that ALSB performs on request messages before invoking a business service or another proxy service. The response pipeline definition specifies the processing that ALSB performs on responses before the proxy service returns a response. Pipelines are used for request and response paths as well as for error handlers.

A pipeline is a one-way processing path. In contrast, a branch node allows processing to conditionally execute exactly one of several possible paths of the message flow.

A route node at the end of the message flow performs routing. The route node is used to perform request and response communication with another service. It represents the boundary between request and response processing for the proxy service. When the route node dispatches a request message, request processing is considered finished. When the route node receives a response message, response processing begins. The route node supports conditional routing as well as request and response transformations.

Pipeline Pair nodes can be combined with other nodes into a single-rooted tree structure. The resulting tree structure provides an overview of the message flow behaviour, making both route actions and branch conditions explicit parts of the overall design.

Pipelines, branch nodes and route nodes can be configured with a sequence of stages. A stage is a container of mediation actions.

5.1.7.3 Message flow design

Any component, pipeline pair nodes, branch node or route node, can be at the root of a message flow. One of the simplest of message flow designs is to have only a route node representing the entire flow. Two components can be linked together without any constraint. Two pipeline pair nodes can be linked together without a branch node in between. In the case of branch nodes, each branch node can start with a different element. One branch can terminate with a route node, a pipeline pair can follow another, and yet another may have no descendant. In the latter case, a branch with no descendants means that at run time, when this branch is executed, response processing begins immediately. However, in general, a message flow is likely to be designed in one of the following forms:

· In the case of non-operational services (services that are not based on WSDLs with operations), the flow likely consists of a single pipeline pair at the root followed by a route node.

· In the case of operational services, the flow likely consists of a single pipeline pair at the root, followed by a branch node based on an operation, with each branch consisting of a pipeline pair followed by a route node.

The designer uses the ALSB graphical console to build a message flow (see next figure). At least one stage must be created within a pipeline node or a route node. Stages are the containers for mediation actions that define the logic of the message flow. Available actions depend of the nature of the component where the stage has been created.

In most cases, it is sufficient to use a single stage in a pipeline. However, some situations require the use of multiple stages in order to define error handlers at a modular level. Indeed, each stage in a message flow can have a separate error handling pipeline.

Messages in the message flow are accompanied by a set of message context variables that contain the message contents. They can be accessed or modified by actions in the pipeline stages.

[image: image25.png]
5.1.7.4 Application resource deployment

An ALSB application on top of the bus infrastructure consists of ALSB resources (also called configuration metadata) such as proxy and business services, message flows, WSDLs, schemas, XQuery and XSLT transformations, and security policies. All ALSB resources reside in exactly one ALSB project. A project can be divided into folders in order to hierarchically organize application resources. Folders are similar to directories in a file system.

ALSB provides support to create and configure ALSB resources in a controlled environment. These configurations (except security configurations) can be imported using a JAR file into separate staging domains for testing and final preparation for promotion into a production domain.

ALSB configuration resources contain environment-specific settings that can be changed or tuned after (re-)deploying a configuration in an existing or a new domain. Environment-specific data for a given domain include:

· Security configurations;

· Service endpoint URIs;

· Directory names;

· Service references (the administrator can reference any resource regardless of the project in which it resides);

· Routing destinations;

· Load balancing settings (ALSB business service configurations).

ALSB configurations can be updated or imported manually using the ALSB administration console, or programmatically using WebLogic Scripting Tool (WLST) and ALSB MBeans in Java programs. In particular, the following MBeans can be used to perform deployment operations:

· SessionManagementMBean: it is used to create, activate and discard a session, or just return the name of an existing session.

· ALSBConfigurationMBean: it is used to import and export ALSB configurations, update environment-specific information (endpoint URIs, etc.), query ALSB configurations and resources.

For more information, see the URLs:

http://edocs.bea.com/alsb/docs25/deploy/intro.html#wp1414719
http://edocs.bea.com/alsb/docs25/deploy/one_config.html#wp1524462
5.1.7.5 Service version management

ALSB provides the ability to deploy new versions of services and enables multiple versions of message resources such as WSDLs and schemas. Versions can include changes to the WSDL, the message schema, the headers, and the security parameters.

ATTENTION: the current ALSB technical documentation is quite light on version management.

5.1.7.6 Quality of Service management

The QoS requirements for proxy and business services are derived from the contractual agreement (SLA). In ALSB, the administrator can set metrics reflecting performance and usage indicators with the following limitations:

· SLA alerts do not inform about the service consumer at the origin of an SLA violation; instead, they identify the proxy service that has produced the error.

· The ALSB reporting actions do not inform either about the requesters.

ALSB provides the following QoS mechanisms:

· Configurable SLA rules. SLA rules allow a given QoS level for proxy and business services to be specified. The administrator specifies SLA rules using the ALSB Console. For example, the administrator can set SLAs on the following attributes of proxy services: average processing time of a service, processing volume, number of errors, security violations, and schema validation errors.

· Configurable aggregator. An aggregator is responsible for the collection and aggregation of data from all the managed servers at regular, configurable intervals. Administrators must thus configure the period of time for aggregating status information.

· Configurable alerts for SLA rule violations. Alerts are responses to rule violations via mechanisms including email notifications, triggered JMS messages, triggered BEA WebLogic Integration processes, Web service invocations, SNMP traps, or administrative console alerts.

· Customized service interaction reporting. The administrator can use the ALSB JMS reporting provider or develop a customized reporting provider.

· Customized SLA alert reporting. The administrator can also develop his own reporting provider to capture SLA data. By configuring a reporting provider for alerts, the administrator can receive an alert notification outside of the ALSB Console. For example, the administrator can develop an alert reporting provider that utilizes the reporting stream for alerts and then display the alerts on a custom console, such as HP OpenView, or Tivoli.

· Configurable security and access policy at the message and transport levels. Many of the initial configuration tasks for ALSB security require the administrator to work in the WebLogic Server Administration Console to configure the WebLogic security framework, in particular, when SSL is used as part of transport-level security. After these initial tasks, the administrator can complete most security tasks from the ALSB Console: for example, he can define a security policy describing transport and message security, including what should be signed or encrypted and security algorithms. A proxy service can also be configured with access control policies. Principal accounts and access control lists to services can be stored in the ALSB embedded LDAP. They can be managed via a customized administration console, or directly via the ALSB administration console.

· Configurable error handlers. ALSB provides error handlers to handle errors generated from message flow logic: an error handler can be associated with a specific stage, a route node or a proxy service. An error handler is a pipeline that enables various actions such as logging, transformation, and publishing to handle errors. Note that errors generated from proxy or business services must be explicitly logged in a pipeline stage for future analysis.

· Configurable error messages. ALSB allows the administrator to configure the mediation application to format and send error messages, and return them to consumers of services who expect a synchronous response.

5.1.7.7 Quality of Service monitoring and controls

The ALSB management console displays health information on a service through a regularly updated graphical interface. It provides summary pages to errors, execution time, success and failure ratios, service usage, and other details. In particular, ALSB provides a rule-based performance monitoring for proxy and business services. It evaluates SLA rules against its aggregated metrics each time it updates the data.

Run-time service-monitoring data is available through the Monitoring Dashboard of the ALSB console. ALSB also provides external access to these data through the JMX Monitoring API. The primary purpose of the JMX Monitoring API is to provide efficient, lower-level APIs supporting bulk operations. It does this using JMX as a transport. This API is not a high-level API compatible with JMX-based tools.

ALSB provides reporting solutions allowing post-mortem analysis. If the ALSB JMS reporting provider is configured, the ALSB console displays the reporting information. Otherwise, no information is displayed in the ALSB Console and the administrator will need to create his own user interface.

5.1.8 Business level management

Business level management deals with service composition and orchestration that represent a particular use case of an ESB.

ALSB mainly provides connectivity and mediation, while other BEA products such as AquaLogic BPM
 and WebLogic Integration (WLI) (see Section 5.1.1) allow developers to create, deploy, execute and optimize business workflows involving both human and system interaction.

The AquaLogic BPM components include design tools for modelling, developing, and testing processes as well as administrative utilities for deploying and monitoring processes. The AquaLogic Service Bus 2.1 can be used to intermediate calls made by the BPM engine to Web Services. BEA WLI 8.1 components can be used from an AquaLogic BPM process flow.

For more information about AquaLogic BPM, see the URL:

http://edocs.bea.com/albsi/docs57/index.html
5.1.9 Standards compliance

ALSB provides Web Service Interoperability (WS-I) compliance in the run-time environment.

In particular, ALSB 2.5 supports the following standards:

· WS-Security 1.0

· WS-Policy

· WS-Policy Attachment 1.0

· WS-Security: Username Token Profile 1.0

· WS-Security: X.509 Token Profile 1.0

· WS-Security: SAML Token Profile 1.0

· SAML 1.1

The position of BEA regarding JBI is a bit unclear. Dain Hansen, senior product manager for AquaLogic Service Bus at BEA, recently expresses himself in his blog on the subject. In particular, he argues that JBI suffers from two major drawbacks: it is too complex and is targeted at integration companies, not developers. He also compares JBI with ALSB options (Java call-out, EJB/RMI transport, Custom transport SDK) that give customers varying levels of extensibility options, and concludes that AquaLogic Service Bus is taking a much more simple route.

For more information, see the URL:

http://dev2dev.bea.com/blog/dainsworld/archive/2006/10/is_jbi_dead.html
5.1.10 Conclusion

The BEA position regarding ESBs is quite interesting in that BEA does not mix concerns relevant to the business application level (service composition and orchestration) with those relevant to the business mediation level (message flow definitions and security controls). BEA provides separate products such as AquaLogic BPM and WLI to deal with business workflows, while the Aqualogic Service Bus can be used to intermediate calls made by the BPM engine to Web Services.

Unfortunately, the business mediation level suffers from several strong limitations:

· No support of business SLAs (only technical SLAs are supported).

· No support of business SLA alerts.

· Low-level and proprietary mediation model.
5.2 IBM WebSphere

This section presents extracts from the IBM technical documentation accessible at the following URL:

http://publib.boulder.ibm.com/infocenter/dmndhelp/v6rxmx/index.jsp?topic=/com.ibm.websphere.wesb.doc
5.2.1 Product strategy

The IBM SOA Foundation is a reference architecture used to build new applications or extend existing applications and business processes. The IBM SOA Foundation includes an integration architecture, best practices, patterns, and SOA scenarios to simplify the packaging and use of IBM software.

The IBM ESB, WebSphere Enterprise Service Bus (WESB), is part of the IBM SOA Foundation. It is defined as a platform for business applications that require integration using different technologies. WebSphere Enterprise Service Bus is built on WebSphere Application Server Network. It supports integration mechanisms such as the Service Component Architecture (SCA) programming model and the Service Message Objects (SMO) data model. SMO business objects can be defined, transformed, routed and mediated, using SCA components.

The IBM ESB strategy aims at addressing simple to complex ESB requirements by combining the IBM ESB WebSphere Enterprise Service Bus with other products such like WebSphere Message Broker or WebSphere MQ.

The WebSphere Process Server is also part of the IBM ESB strategy. It is a business process server based on the WebSphere Application Server and a core SOA comprising the Service Component Architecture and the Common Event Infrastructure (CEI) standards. Through the WebSphere Process Server, IBM offers an access to a core ESB technology. Note that WebSphere ESB shares development (through WebSphere Integration Developer) and administration tools with WebSphere Process Server.

For more information about the IBM SOA Foundation, see the URL:

http://www-128.ibm.com/developerworks/webservices/library/ws-soa-whitepaper/
5.2.2 ESB definition

According to IBM, an ESB is an architectural pattern that supports virtualization and management of service interactions between communicating participants. It provides connectivity among service providers and requesters, facilitating their interactions even if they are not exactly matched. This pattern can be implemented using a variety of middleware technologies and programming models.

5.2.3 SOA scenarios

The IBM Redbook presents architectural scenarios for SOA solutions. In particular, it focuses on the Service Connectivity scenario that describes architectural solutions using an ESB. This scenario demonstrates how existing and new services or systems owned by an enterprise can be reused and be made available as services to a variety of internal and external clients.

Through this scenario, IBM seeks to answer the following challenges:

· Enable changes to the implementation of a service without affecting clients;

· Register services to a service registry;

· Use an enterprise service bus as the integration point between service providers and service consumers;

· Enable clients to access a service with a different interface and protocol than what the service consumer supports;

· Enable management and monitoring of services to insure service level agreements;

· Provide security and credential mapping (where needed) to insure proper use of the services.

IBM offers implementation solutions that can be built on the following runtime products:

· WebSphere Message Broker;

· WebSphere Enterprise Service Bus;

· WebSphere Service Registry and Repository;

· IBM DataPower SOA Appliance. Security and traffic processing are placed on the XML appliance and not on the server infrastructure. It is an alternative solution to an ESB, when the processing of the XML traffic is an issue that threatens the long-term viability of SOA implementations.

· Web Services Gateway (WebSphere Application server Network Deployment V6). If services are provided to or consumed from a third party, an ESB gateway can be used in conjunction with the ESB to add security measures. The ESB gateway alone may be sufficient if all of the service interactions are with third parties and if basic mediations are required between service consumers and providers;

· WebSphere Adapters (for Flat Files, JDBC, PeopleSoft Enterprise, Siebel Business Applications, SAP Applications). They are compliant with J2EE Connector Architecture (JCA 1.5). WebSphere Adapters are assembled in WebSphere Integration Developer from imported RAR files and then exported as an Enterprise Application Archive (EAR) file and deployed on WebSphere ESB.

For more information about the Service Connectivity scenario, see the URL:

http://www.redbooks.ibm.com/abstracts/sg247228.html?Open
5.2.4 Patterns

IBM has identified and classified patterns for building ESB-based solutions. This section focuses on the interaction, mediation and deployment patterns.

For more information about these patterns, see the URL:

http://www-128.ibm.com/developerworks/library/ws-soa-progmodel4/
5.2.4.1 Interaction

The ESB enables endpoints to interact in their native interaction modes through the bus. It supports a variety of endpoint protocols and interaction styles.

IBM has identified the following interaction patterns:

· Request/response: Handles request/response-style interactions between endpoints. The ESB is based on a messaging model, so a request/response interaction is handled by two related one-way message flows -- one for the request and one for the response.

· Request/multi-response: A variant of the above, where more than one response can be sent.

· Event propagation: Events may be anonymously distributed to an ESB-managed list of interested parties. Services may be able to add themselves to the list.

5.2.4.2 Mediation

Mediation plays an important role in managing service interactions. First, applications and services interacting over a SOA system are most of the time incompatible. Second, intermediaries are needed to route application data to services based on functional criteria. Third, various governance policies must be controlled and enforced at different points of the traffic between an application and the target service.

WebSphere ESB provides a mediation model to manipulate messages on the bus (requests or events). The IBM mediations operate on one-way messages.

IBM has identified basic mediation components drawn in the figure hereafter (see URL http://www-128.ibm.com/developerworks/library/ws-soa-progmodel4/).

[image: image26.png]
The above mediations are not described in the IBM technical documentation. We could presume that WebSphere ESB does not implement them natively. However, since IBM uses the "pattern" terminology, we could expect them to provide us guidance about how these mediations should be implemented and how they should be combined to build more complex mediations.

5.2.4.3 Deployment

IBM describes several possible ESB topologies presented in the figure hereafter (see URL http://www-128.ibm.com/developerworks/library/ws-soa-progmodel4/).

[image: image27.png]
In the global ESB topology, all services share one namespace and each service provider is visible to every service consumer across a heterogeneous, centrally administered, geographically distributed environment. According to IBM, departments or small enterprises should use this topology where all the services are likely to be applicable throughout the organization.

In the directly connected ESB topology, a common service registry makes visible the services managed by several independent ESB installations. According to IBM, this topology should be used where services are provided and managed by various organizations but made available enterprise-wide.

In the brokered ESB topology, bridge services selectively expose requesters or providers to partners in other domains and regulate sharing among multiple ESB installations that each manages its own namespace. Service interactions between ESBs are facilitated through a common broker that implements the bridge services. According to IBM, departments that develop and manage their own services, but share a few of them should use this topology, or selectively access services provided across the enterprise.

In the federated ESB topology, there is one master ESB to which several dependent ESBs are federated. Service consumers and providers connect to the master or to a dependent ESB to access services throughout the network. According to IBM, this topology should be used by organizations that federate a set of moderately autonomous departments under the umbrella of a supervising department.

5.2.5 Product architecture overview

The overall infrastructure of WebSphere ESB can be viewed as two integrated environments that separate the deployment and management of applications and services from management of the underlying server and bus environment, as shown in the figure hereafter (see the URL:

http://publib.boulder.ibm.com/infocenter/dmndhelp/v6rxmx/index.jsp?topic=/com.ibm.websphere.wesb.doc/tasks/twesb_silent_dmgr.html).

[image: image28.png]
A solution administrator can deploy any new services required, and the mediation modules (as SCA modules) that enable new and existing services to interact correctly. Applications and services are deployed into the application integration environment, with little or no concern for their implementation and the underlying infrastructure services provided by the server and bus environment.

WebSphere ESB currently supports the following four types of integration:

· Web Services (WSDL);

· JMS (using queues);

· WebSphere BI Adapters (connectivity to traditional back-end Enterprise Information Systems), and

· J2C Adapter (new Java standards for adapters).

5.2.6 Infrastructure level management

WebSphere ESB takes advantage of the capabilities of the underlying WebSphere Application Server Network Deployment and inherits that product’s qualities of service, workload balancing, clustering, high availability and scalability features. It can be deployed as a production environment or test environment that can be part of a larger system.

The focus of this section is on ESB topologies, bus resource deployment, and QoS management and monitoring.

5.2.6.1 Bus deployment topologies

WebSphere ESB can be deployed either stand-alone or across a network. Stand-alone deployment means that the server is managed from its own administration console, independently of any other servers running on the network. Network deployment means that multiple servers can be managed from the administration console of a central deployment manager.

IBM enables various ESB deployment topologies:

· Single-server enterprise service bus. The simplest topology is an ESB consisting of a single server.

· Multiple-server enterprise service bus without clustering. SCA modules can be deployed to different servers; for example, to provide different resources and qualities of service.

· Multiple-server enterprise service bus with clustering. A deployment manager cell (administrative domain) can be used for an enterprise service bus that consists of multiple servers, some or all of which are members of server clusters.

· Multiple enterprise service bus topology. SCA modules can be deployed in a distributed bus environment.

· Connection to WebSphere MQ. WebSphere ESB can also be combined with an existing WebSphere MQ messaging installation. This allows applications connected to a WebSphere MQ queue manager to send messages to an application that is attached to a service integration bus, and for such an application to send messages to WebSphere MQ.

· Connection to WebSphere Message broker. WebSphere ESB can interoperate with WebSphere Message Broker to implement complex ESB topologies with WebSphere ESB handling standards-based Web service interactions and WebSphere Message Broker providing its support for a wide range of message format.

5.2.6.2 Bus resource deployment

Once WebSphere ESB is installed, it can be configured by creating at least one profile. Each profile defines one of three types of profile: a stand-alone server, a managed node, or a deployment manager.

With a stand-alone profile, the bus environment comprises only one server and needs little administration.

With a deployment manager profile, the administrator creates and configures several servers and server clusters on nodes in the administrative domain known as the deployment manager cell. It is possible to start with one server in the deployment manager cell and to optionally add capacity and enhanced availability by building up multiple servers or server clusters.

The bus environment comprises one or more service integration buses, ESB servers, and their resources, organized into logical administrative domains of cells and nodes. In particular, the bus relies on the following key resources:

· Service integration buses. Two buses are created using a stand-alone profile or a deployment manager profile. SCA modules are deployed on these buses. SCA.SYSTEM.cell_name.Bus is used to host queue destinations for SCA modules, such as mediation modules. SCA.APPLICATION.cell_name.Bus is used to create resources for modules deployed with JMS bindings.

· SCA runtime (exploited by mediation modules). It uses queue destinations on the SCA.SYSTEM bus as a robust infrastructure to support asynchronous interactions between components and modules.

The figure hereafter represents two service integration buses created with a stand-alone profile (see URL:

http://publib.boulder.ibm.com/infocenter/dmndhelp/v6rxmx/index.jsp?topic=/com.ibm.websphere.wesb.doc/tasks/twesb_silent_dmgr.html).

[image: image29.png]
Each WebSphere ESB profile defines a separate runtime environment, with separate files (commands, configuration files, log files, etc.). The installation process for stand-alone servers, managed servers and deployment managers is identical. In the WebSphere administrative console, a solution administrator can choose to apply the Server and Bus task selection filter to restrict the range of tasks to those associated with the management of the bus environment. This displays panels suitable for the following task areas:

· List the service integration buses, servers, server clusters, messaging engines, and local topologies needed to support the deployment of mediation modules and service applications.

· Enable and disable infrastructure services.

· Install applications and mediation modules.

· Create resources (for example, JMS connection factories and Common Event Infrastructure profiles) needed by deployed service applications and mediation modules.

· Control of the ESB runtime.

Besides the administrative console, commands, scripts and administrative programs can be used to manage the server and bus environment.

5.2.6.3 Quality of Service management

WebSphere ESB provides QoS features, in particular:

· Delivery guarantees. The SCA.SYSTEM bus provides a scope within which resources, such as queue destinations, are configured for mediation modules and interaction endpoints. The administrator can configure a variety of quality of service from secure, assured delivery (where messages are guaranteed not to get lost and are transported securely) to best-effort (where messages might get lost in case of a system failure). The bus enables message routing between endpoints with specific quality of interaction service and can temporarily persist messages if required.

· Scalability. A single messaging engine might not be adequate if the number of client connections becomes excessive, if the rate of message throughput cannot be sustained by the one messaging engine, or if the size of messages has a detrimental affect on the message buffers used by the messaging engine. To add more than one messaging engine to a service integration bus, the manager needs to use a profile for a managed node in a deployment manager cell.

If a quality of service is not specified, WebSphere ESB applies its defaults.

5.2.6.4 Quality of Service monitoring and controls

IBM and other business partners leverage the WebSphere APIs to capture performance data and to incorporate this data into an overall 24-by-7 monitoring solution across multiple products. WebSphere ESB exploits the Performance Monitoring Infrastructure (PMI) data of WebSphere Application Server to help monitor the overall system health. PMI provides average statistics about system resources, application resources, and system metrics. Many statistics are available in WebSphere Application Server.

The Tivoli Performance Viewer can be used to start and stop performance monitoring, view PMI data in chart or table form as it occurs on the system and, optionally, log the data to a file that the administrator can later review in the same viewer.

For more information, see the URL:

http://publib.boulder.ibm.com/infocenter/dmndhelp/v6rxmx/index.jsp?topic=/com.ibm.websphere.wesb.doc/tasks/twesb_silent_dmgr.html
5.2.7 Application level management

The application level comprises all the WebSphere ESB resources involved in message routing, transformations, and security controls. The focus of this section is on the related WebSphere ESB concepts, application resources deployment, and QoS management and monitoring.

5.2.7.1 Service applications

Service applications enable message-based communication between services and can manipulate messages between interaction endpoints.

Service applications have an associated Service Component Architecture (SCA) module that is the mediation module. Service applications provide mediation services that can be characterized by a set of QoS requirements.

5.2.7.2 Mediation services

Mediation services are implemented using one or more mediation modules. Mediation modules provide a way to change the format, content or target of service requests and responses. They can be deployed on the WebSphere Enterprise Service Bus or on the WebSphere Process Server.

A mediation module contains one or several mediation flows. A mediation flow consists of a sequence of processing steps defined by mediation primitives that are executed when an input message is received. Mediation primitives receive and propagate messages.

SCA (mediation) modules are connected to service consumers through exports and to service providers through imports. Export interfaces are abstract definitions that describe how service consumers access an SCA module. Import interfaces are abstract definitions that describe how an SCA module accesses a service provider. WebSphere ESB supports WSDL interfaces only (it does not support Java interfaces).

For more information, see the URL:

http://publib.boulder.ibm.com/infocenter/dmndhelp/v6rxmx/index.jsp?topic=/com.ibm.websphere.wesb.doc/tasks/twesb_silent_dmgr.html
5.2.7.3 Mediation flow design

WebSphere Integration Developer is the separate development environment for WebSphere ESB. WebSphere Integration Developer allows developers to graphically model and assemble a mediation flow component from mediation primitives, and assemble a mediation module from mediation flow components.

The Mediation Flow editor palette provides a ready-made set of mediation primitives that allow the developer to create a request flow and a response flow. For example, a Database Lookup primitive retrieves a value from a database and sets it in the message. A developer can also create custom mediation primitives that can call his own Java implementation or an imported service. For example, he can implement an XSL transformation mediation primitive when the source and target message types are different.

Messages in mediation flows are represented as service message objects (SMOs). Service message objects are defined as enhanced business objects that include the following elements: context (data about the execution environment), headers (header information associated with the message) and body (operation message type). XPath 1.0 expressions can be used to access elements in a message.

5.2.7.4 Application resource deployment

Service applications are deployed to WebSphere ESB within EAR files. While the concept of deploying is the same for both test and production environments, there are a few differences between the deployment task in each environment.

WebSphere Integration Developer is used to deploy the service applications into a test environment, and to package a service application as a standard enterprise application package for deployment into WebSphere ESB.

WebSphere ESB is used to install and deploy the service applications into a production environment. The application administrator can use the WebSphere administrative console to install a mediation module EAR file into a server or cluster and then starts the deployed module. Alternatively, he can also use other methods, like the install or install interactive command with the wsadmin tool, or use ANT tasks to automate the deployment of applications to WebSphere ESB.

During installation, the administrator can configure the mediation module to enable it to run in WebSphere ESB. After installation, he can configure the module further, start or stop the application, and otherwise manage its activity.

Mediations can be explicitly configured. For example, an integration developer might configure an enrich mediation that modifies the message content. They can also be automatically configured. Indeed, the ESB can put in place other mediations to satisfy QoS requirements of the service requesters and providers. For example, if a service provider's security policy declaration requires encrypted messages, the ESB can configure encryption mediation automatically.

After deploying an EAR file containing an SCA module, the administrator can view details about:

· The service application.

· The SCA module associated with the service application.

The administrator can see how an SCA module is connected to service requesters and service providers. SCA modules are connected to service requesters through exports, and to service providers through imports.

5.2.7.5 Service version management

Not documented.

5.2.7.6 Quality of Service management

QoS requirements include performance and reliability, authorization of requests, encryption/decryption of message contents, automatic auditing of service interactions, and how requests should be routed (for example, based on workload distribution criteria). Policies that describe the QoS requirements and capabilities of requesters and providers may be fulfilled services themselves or fulfilled by the ESB compensating for mismatches.

A service application communicates its quality of service requirements to a runtime environment by specifying service qualifiers. Service Components Architecture allows qualifiers, such as transactions, security, and reliable asynchronous invocation, to be applied to mediation services without requiring programming or a change to the services implementation code. Quality of service qualifiers can be specified when wiring components in the assembly editor in WebSphere Integration Developer.

Service applications are managed from the WebSphere ESB administrative console. After deploying mediation modules into WebSphere ESB, an administrator can manage the runtime properties of the modules and their associated applications, and configure resources that they need and monitor their performance.

In the WebSphere administrative console, an administrator can apply the Application Integration task selection filter to restrict the range of tasks to those associated with management of application integration.

WebSphere ESB also integrates with IBM Tivoli Composite Application Manager for SOA, providing monitoring of Web services messages and management of their endpoints.

5.2.7.7 Quality of Service monitoring and controls

WebSphere ESB provides support for monitoring SCA requests throughput and events.

WebSphere ESB provides request metrics to help trace each individual transaction as it flows through the ESB, recording the response time at different stages of the transaction flow. In addition, several IBM development and monitoring tools that are based on the request metrics technology (for example, Tivoli Monitoring for Transaction Performance) are available to help view the transaction flow.

For each SCA module deployed on WebSphere ESB, requests being processed are held on queue points and in the data store for messaging engines. The administrator can display the data for SCA requests, and if appropriate take further action to manage the throughput of SCA requests.

The administrator can configure WebSphere ESB to capture the data in a service component at a certain event point. The Common Event Infrastructure (CEI) is used to provide basic management services for events. The format of those events is defined by the Common Base Event specification. The administrator can have this event data published to the logging facilities, or he can use the monitoring capabilities of a Common Event Infrastructure server.

For more information about monitoring SCA requests throughput and events, see the URL:

http://publib.boulder.ibm.com/infocenter/dmndhelp/v6rxmx/index.jsp?topic=/com.ibm.websphere.wesb.doc/tasks/twesb_silent_dmgr.html
5.2.8 Business level management

The creation of composite applications almost always involves orchestration. When the Enterprise Service Bus must address complex functional requirements, it is possible to add advanced service composition and orchestration capabilities supported in WebSphere Process Server, such as:

· Business processes and state machines for endpoint orchestration, and

· Business rules for dynamic decision making

to augment the basic WebSphere ESB service-connectivity capabilities.

5.2.9 Standards compliance

WebSphere ESB supports Web services standards including WS-Security and WS-Atomic Transactions. It also includes a Universal Description, Discovery and Integration (UDDI), Version 3.0 that can be used to publish and manage service endpoint metadata, which enables service definitions to be made available to client applications. Integration developers can interact with UDDI to locate and service interfaces when developing mediation modules.

5.2.10 Conclusion

The IBM product strategy is oriented toward specific and rather homogeneous concerns related to the business process level, the business mediation level and the communication level:

· The WebSphere Process Server addresses service composition and orchestration capabilities, as well as SLA/SLM features. It also supports the Service Component Architecture (SCA) programming model (see next item).

· The WebSphere ESB supports integration mechanisms such as the SCA model to deal with business-oriented issues that are critical at the business mediation layer: develop and assemble mediation modules, specify quality of services, deploy mediation modules, re-configure mediation modules at run-time, etc. The WebSphere ESB can also be augmented with (mediation?) service composition and orchestration capabilities.

· The IBM DataPower SOA Appliance is presented as an alternative solution to an ESB, when the processing of the XML traffic is an issue that threatens the long-term viability of SOA implementations. The DataPower product addresses issues that are mostly critical at the communication level.
It should be noted that IBM presents DataPower as an alternative solution to an ESB, although these two classes of solutions could answer complementary needs in an SOA.
5.3 Standalone software bus

5.3.1 EBM WebSourcing PEtALS

PEtALS is described and analysed in a separate JOnES document accessible at the following URL: http://wiki.petals.objectweb.org/xwiki/bin/view/Main/WebHome
An article is being written to describe the main advantage of the distribution in PEtALS. Read it at

 http://wiki.petals.objectweb.org/xwiki/bin/view/Documentation/ArticleDistributionPEtALS
6 Standardization

6.1 JBI

6.1.1 Introduction

The JBI specification provides a plug-in approach to create tailored integration solutions by putting together integration components.

The JBI specification is standardized in the framework of the JCP. The JSR 208 describes JBI 1.0.

The article “Use JBI components for integration - An introduction to Java Business Integration components” written by Adrien Louis and published on JavaWorld.com in July 2006 provides a quite complete introduction to JBI. Another article written by Adrien Louis, entitled “Build an SOA application from existing services - Put heterogeneous services together with the Petals ESB”, published on JavaWorld.com in November 2006 describes how JBI can be used to put together JBI components to integrate existing services. JBI architecture is described in detail in the JONES architecture document. We give here a shorter introduction of the architectural principles defined and promoted by JBI, the limitations identified in the JONES project, and the way we will promote extensions to JBI.

6.1.2 Architecture

[image: image30.jpg]
JBI architecture

JBI promotes a plug-in architecture, which enables the creation of specialized integration solutions by putting together best of breed integration components.

The centre part of the JBI specification is the Normalized Message Router (NMR), described as the “JBI environment” in the previous figure. This NMR ensures a loosely coupled communication between JBI components by providing standards SPI that promote the exchange of XML documents between the components and loose references between the components via the use of their interface name.

There are two types of JBI components:

· Binding Components are “connectors” that interface the JBI bus with the rest of the Information System. Binding Components enable both the exposition of external resources in the bus and the exposition of services available on the bus for their use by external consumers. Examples of such binding components provide connection for Web Services, FTP, Mail, Message Oriented Middleware, or even standard business communications like EDI or ebXML…

· Service Engines provide the integration logic. They typically handle messages that pass through the bus in order to provide routing, transformation, orchestration, log or audit features.

JBI is all about several aspects:

· Inter component communication

· Component installation

· Component configuration (that is the deployment of artefacts on the components in order to expose new services).

· Life Cycles

6.1.2.1 Component interactions

[image: image31.jpg]
Two components interact through the NMR

The previous figure describes a loosely coupled exchange between a JBI component that consumes a service and the JBI component that provides it. The JBI environment is a sort of mediator between the consumer and the provider.

The communication is concretised by a MessageExchange which contains both the message payload and metadata like the security context or the message exchange pattern (InOnly, InOut,…). Each component interacts with the NMR simply by sending or accepting message exchanges. The loosely coupling is fostered by the fact that a component can be addressed by its interface name rather that it actual address. It provides good directions to tackle the stakes of service versioning.

6.1.2.2 Component installation

[image: image32.png]
Installation of JBI components

One step in the configuration of a JBI environment is the installation of the JBI components like for example an XSLT service engine which enable XSLT processing in the bus, or a SOAP binding component that enables Web Services call or exposition.

6.1.2.3 Component configuration (artefact deployement)

[image: image33.png]
Artefact deployment

Once components are installed, artefacts can be deployed on these components in order to enable services on the bus.

For example, such an artefact can be an XSLT style sheet, which will be deployed to the XSLT service engine in order to expose a new service from transformation from a format to another.

In most use cases, the creator of a JBI tailored integration solution installs components in a bus while user of this integration solution who are developer of information systems just create the right artefact and deploy them to the bus in order to implement their integrations like shown in the following figure.

[image: image34.png]
Configured integration solution

6.1.2.4 Life cycles

Finally, a large part of JBI concerns life cycle management. Typical actions include the ability to start, stop or shutdown an artefact, or a JBI component.

6.1.3 JBI and Web Services

JBi totally endorse the state of Web Services technologies.

First of all, every JBI compliant implementation must provide a SOAP/HTTP binding component that respects the WS-I Basic Profile 1.0.

Moreover, the NMR specification builds its logic on many WS related specifications:

· Use of XML documents for messages payload

· Description of the interfaces in WSDL

· Use of WSDL Message Exchange Patterns to describe the various way of interaction between components through the NMR (InOnly, RobustInOnly, InOptionalOut, etc…)

6.1.4 Limitations of the current specification and evolutions

The major limitation of JBI 1.0 stands in the fact that it specifies that a JBI container must run in one JVM. In this specification, issues related to the distribution of JBI components in different JBI containers are considered for future work. The approach adopted in JONES is to both implement the JBI specification (in order to comply with the JBI “Test Compatibility Kit”), and to extend this specification by addressing from the beginning the distribution issue in order to provide a distributed ESB with centralized administration.

JSR 208, whose final release was published in August 2005 describes JBI in its 1.0 version. It is expected that a new JSR will be started this year to work on JBI 2.0. EBM WebSourcing is committed to participate to the expert group of this new JSR. It will be the right place to push the principles designed and implemented in the JONES project.

6.1.5 Toward a JBI component market

JBI takes its power with the number of available JBI components.

It must be noted that each JBI engines today provides its proper set of JBI components, some major components appear independently of the JBI containers. For example, one JBI4CICS component is hosted on source forge independently of any JBI container.

It must be noted that the JBI TCK ensures that a JBI compliant component will work correctly on any JBI compliant container.

Moreover, it must be noted that the JBI API for component are quite simple and can be used to create JBI components for specific user needs, either by building directly on the JBI APIs, or by using a higher level framework which already provides component skeleton with well design components patterns.

6.2 SCA

6.2.1 Introduction

The Service Component Architecture (SCA) provides a component-based approach to building service-oriented applications. It is quickly gaining ground as the preferred programming and composition model for SOA. Most major companies that provide SOA infrastructure and services have endorsed SCA and a few major actors have created the Open SOA Collaboration (OSOA) group that is the main forum for advancing the SCA development. OSOA (www.osoa.org) is an informal gathering of companies and aims at eventually submitting the SCA specification to a recognized standardisation body.

Since SCA is mainly concerned with encapsulating and composing business services represented as components, it offers means of integrating existing “legacy” services as well as new business services written for the purpose of integration in the new SCA systems. According to OSOA, “SCA is a model that aims to encompass a wide range of technologies for service components and for the access methods which are used to connect them. For components, this includes not only different programming languages, but also frameworks and environments commonly used with those languages. For access methods, SCA compositions allow for the use of various communication and service access technologies that are in common use, including, for example, Web services, Messaging systems and Remote Procedure Call (RPC)."

SCA currently specifies an Assembly model, several Client and Implementation models for different languages, a Policy Framework and several Binding specifications for different technologies. These specifications are outlined in the following subsections. They include quotations and images from the respective documents available at www.osoa.org.

Note: An in-depth study and implementation of SCA is undertaken in the context of the SCOrWare project (ANR RNTL 2006). SCOrWare aims to provide an SCA runtime platform and study the relations between SCA and the Java Business Integration (JBI) specification.

6.2.2 Assembly Model

The SCA Assembly Model specifies how services can be assembled and structured as well as how infrastructure properties such as security and transactions can be applied to services. The following diagram illustrates the main concepts in the SCA assembly model. Each concept is described in short in the following paragraphs.

[image: image35.png]
The Component is “the unit of construction for SCA. A Component consists of a configured instance of an implementation, where an implementation is the piece of program code providing business functions. The business function is offered for use by other components as services. Implementations may depend on services provided by other components – these dependencies are called references. Implementations can have settable properties, which are data values which influence the operation of the business function. The component configures the implementation by providing values for the properties and by wiring the references to services provided by other components."

An SCA Composite “is used to assemble SCA elements in logical groupings. It is the basic unit of composition within an SCA System. An SCA composite contains a set of components, services, references and the wires that interconnect them, plus a set of properties which can be used to configure components.

Composites may form component implementations in higher-level composites – in other words the higher-level composites can have components that are implemented by composites."

The following image outlines the main characteristics of a composite:

[image: image36.png]
Interfaces « define one or more business functions. These business functions are provided by Services and are used by References. Services are defined by the Interface which they implement. SCA currently supports the following interface type systems:

· Java interfaces

· WSDL 1.1 portTypes

· WSDL 2.0 interfaces

Bindings “are used by services and references. References use bindings to describe the access mechanism used to call an external service (which can be a service provided by another SCA composite). Services use bindings to describe the access mechanism that clients (which can be a client from another SCA composite) have to use to call the service.

SCA supports the use of multiple different types of bindings. Examples include SCA service, Web service, stateless session EJB, data base stored procedure, EIS service. An SCA runtime MUST provide support for SCA service and Web service binding types. SCA provides an extensibility mechanism by which an SCA runtime can add support for additional binding types."

6.2.3 Client and Implementation Models

SCA defines multiple mappings and APIs to support the development of service components and clients in different languages. The languages currently supported are:

· Java

· C++

· BPEL

· PHP

· EJB

· Spring

The following extract from the Java Client and Implementation Model serves as example of the scope of these specifications. Similar constructs are specified for the other supported languages.

"The SCA Java Client and Implementation model specifies a Java syntax for SOA programming concepts defined in the SCA Assembly Model Specification. The Java SCA Client and Implementation model is designed to be used in conjunction with, or layered on, existing programming models such as Spring or J2SE. Specifically, this specification covers:

1. Java mappings for assembly model concepts such as "component" "component type", “service”, "reference", and "property"

2. Java mappings for implementing asynchronous and conversational services

3. Java mappings for specifying component lifecycle notifications

4. Java mappings for specifying service and implementation scopes"

6.2.4 Policy Framework

The Policy Framework defines a set of concepts and their representation in order to allow for the definition of non-functional requirements in an SCA system. The framework allows the definition of constraints, quality of service characteristics and other non-functional capabilities and to map them to components. It also allows "allows policies and policy subjects specified using WS-Policy and WS-PolicyAttachment, as well as with other policy languages, to be associated with SCA components".

The Policy Framework covers the following concepts:

Intents: allow SCA developer to specify abstract Quality of Service capabilities or requirements independent of their concrete realization.

Profile Intents: allow the SCA developer to express collections of abstract QoS intents.

PolicySet: collects together concrete policy and policy subject pairings, potentially from different policy domains, and declares which intents that they realize collectively.

Intent Maps: are a set of alternative concrete policy and policy subject pairs for a single policy domain; declare defaults and fixed values for alternatives in a single domain."

The Intents are the most basic entities of the framework. According to OSOA, “an Intent is an abstract assertion about a Quality of Service characteristic that is expressed independently of any particular technology to implement that characteristic, and applies to a specific domain (e.g. security). An Intent is thus used to describe a desired runtime characteristic of an SCA construct. A policy administrator may define intents.

For example, an Intent, named “confidentiality”, may be specified to signify that communications should be protected from possible snooping. This specific intent may be declared as a requirement by some SCA artefacts, i.e. a reference. Note that this intent can be satisfied by a variety of bindings and with many different ways of configuring those bindings. Thus, the reference where the intent is expressed as a requirement could eventually be wired using either a web service binding (SOAP over HTTP) or with an EJB binding that communicates with an EJB via RMI/IIOP."

6.2.5 Binding Specifications

Bindings apply to services and references and they allow the provision of services and resolution of references respectively, via different protocols. OSOA currently provides detailed specifications for the following types of bindings:

· Web Services

· Java Message Service (JMS)

· Java Connector Architecture

6.3 Relationship between SCA and JBI
SCA and JBI are complementary standards. SCA is mainly aimed at architects and developers concerned with defining the structure of a system from a functional point of view, while JBI is aimed at infrastructure vendors that create ESB platforms or ISVs that use an ESB to create custom integration solutions.

For JBI users, SCA can be a valuable aid in defining the architecture of the application to be integrated. For architects using SCA, JBI can be used as the platform of choice for integration, although there are of course SCA runtime platforms as well.

One aspect to be taken into account is that SCA aims at building applications by explicitly wiring components together, while JBI promotes loosely coupling between services.

There is three main aspects in the relationship between JBI and SCA:

· Create an SCA binding Component compliant to JBI in order to open a way to JBI integration for SCA applications

· Create an SCA Service Engine to host SCA applications in a JBI container

· Map concepts between SCA and JBI. This aspect is described in the next section.

The role of an SCA binding component would be to establish a link between applications written as SCA composites, and an enterprise service infrastructure built with JBI. The objective here is to consider the JBI part as a black box dedicated to integration with other corporate applications. Architects can use SCA to create composites applications in which one component is the JBI bus whose responsibility is to provide all the features for integration with all other parts of the Information System. This SCA Binding Component must understand wires and SCA assembly to describe how the composite application connects to the bus. The SCA BC must be able to implement wires and to understand SCDL.

The role of an SCA Service Engine is to integrate an SCA runtime as a JBI service engine. Thus, JBI plugins can be written and assemble as SCA composites. This case emphasizes on the processing of SCA service annotations http://www.osoa.org/download/attachments/35/SCA_JavaComponentImplementation_V100.pdf?version=1. In this case, mediations can be written as SCA components like it is done in WebSphere ESB as described in

 HYPERLINK "http://www-128.ibm.com/developerworks/websphere/library/techarticles/0701_lin/images/mediationFlowEditor602.jpg"
http://www-128.ibm.com/developerworks/websphere/library/techarticles/0701_lin/images/mediationFlowEditor602.jpg.
6.4 Discussion on SCA and JBI Mapping

This high-level discussion leverages the overlapping parts of the two specifications in order to draw analogies and propose mappings between several SCA and JBI concepts. However, these proposed mappings do not imply equivalence, instead they provide a means to connect two sets of concepts used at different levels of the software lifecycle.

SCA Components can be mapped to JBI Service Units (SUs) for JBI Service Engines (SEs). Both concepts entail executable services. Although JBI SUs for Binding Components (BCs) can also be seen as realisation of external services, they are probably better illustrated as proxies of external services on the bus. This makes the mapping between SCA Components and SUs for BCs less meaningful, although possible. It is worth noting that SCA Components can also be Composites (see section 6.2.2 for detailed descriptions). When dealing with Composites though, the mapping to JBI Service Assemblies is more appropriate (see below).

SCA Composites can be mapped to JBI Service Assemblies as both concepts refer to composed service elements. While in SCA the composition refers to business-level service composition in order to provide more complex functionality, in JBI, the assemblies respond to deployment needs, where several artefacts must be grouped together at deployment time in order to ensure consistency.

SCA Binding Types refer to the means of accessing services (i.e. what protocol is used when invoking a service – such as web services or RMI). There is a strong correlation between this concept and the Binding Components in JBI which are components used to intermediate access to services outside the bus or to expose a presence on the bus for services that are external. Therefore, SCA Binding Types can be mapped to JBI BCs. From a practical standpoint, this implies that (if an SCA-JBI mapping is performed) for each SCA Binding Type in use, there must be an existing JBI BC (e.g. Web Services BC) on the bus. Note however that multiple SCA components can expose the same Binding Type (e.g RMI). This does not mandate the use of multiple instances or copies of the RMI BC on the JBI bus, rather the availability of a single BC (with multiple service units corresponding to each externally accessible SCA component).

SCA Wires are architectural constructs that establish connections between SCA components, services and references. There are two ways of mapping this concept to JBI entities. The first is to use JBI service connections, declared as metadata in service assemblies’ deployment descriptors, in order to describe the “from” and “to” elements of the SCA wires. This mapping is direct and in effect draws the connection between the architectural space to the deployment space. The second possible mapping is to use the implicit message exchanges between services on the bus as the realisation at runtime of the SCA wires. This mapping is more precise because the runtime exchanges represent the “real” connection between services rather than the optional dependency specification in assemblies. However, this second mapping is less direct than the first one, as it does not involve straight correlation of entities from SCA and JBI.

Several other mapping possibilities might exist between the SCA and JBI conceptual spaces. The above discussion serves as a starting point in the investigation and will be leveraged in the JCP standardisation process for JBI 2.0.

6.5 Possible Integration of SCA and JBI in Development

The Eclipse STP Intermediate Model (STP-IM) component a recent addition to Eclipse STP, is meant as a "bridge" between such editors. Its elements have the role of conceptual transport between different development spaces with the purpose to capture as much common SOA design information from different editors as possible. In particular it aims to bridge the workflow and process world (BPMN / BPEL) with the architecture specification world (SCA / JBI) and the service creation world (such as JAX-WS). The representation of policies is also supported by STP-IM.

[image: image37.wmf]

Figure 1 - Intermediating SOA Development Spaces

Figure 1 outlines the relationship between different SOA editors, the STP-IM and the SOA runtimes (such as ESBs or SCA platforms). Editors not using the STP-IM can directly generate deployment artefacts for the SOA runtime of choice. Each editor targeting a particular platform must generate the artefact for deployment on that platform. In addition, editors that target other editors for exporting artefacts must have one transformation for each such target editor. Using the Intermediate Model, editors must only have one transformation for exporting data and / or one transformation from importing data to / from the IM. The STP-IM contains elements that aim to cover some of the most common concepts found in SOA-related editors and deployment platforms. A detailed description of the metamodel can be found at http://wiki.eclipse.org/STP_Intermediate_Metamodel.
Due to this "hybrid" nature of the metamodel, some of its concepts cannot map directly to the corresponding concepts in each of the design spaces it aims to unite. This is unavoidable and in fact desirable in order to attain a higher-level set of abstractions that can more easily map to different specifications. By using highly configurable elements, the IM facilitates the transport of platform-specific information between editors, while not directly supporting the full semantics of each element of source and target editors.

6.6 SCA / JBI Mapping Scenario using STP-IM

This subsection presents a transformation scenario in which the STP Intermediate Model is used to transport SOA-related design information between editors.

In the first step of the scenario, illustrated in Figure 2, a business-process designer uses a BPMN or perhaps a BPEL editor to create a simple “travel/trip reservation” process. She decides that the process consists of booking a hotel, obtaining the weather forecast for the trip dates and sending an email summary to the customer containing travel information.

[image: image38.png]
Figure 2 - Sample Process
After finalising the design of the business process, another team member, the chief architect, opens up the SCA editor to describe the architecture of the application. As illustrated in Figure 3, he already has a pre-generated SCA composite with elements corresponding to services to be called in the context of the orchestration for the travel scenario. The orchestration process itself is realised by the Travel Service component, which also promotes its service to the composite level, effectively making the composite expose the new orchestration service.

The orchestration component has pre-generated dependencies to the three orchestrated services. The architect decides that the placeholders for the forecast service and the email service can be replaced with references to existing services in the SOA repository.

[image: image39.png]
Figure 3 - Sample Generated SCA Diagram
He enhances the generated diagram to promote these two references as composite references and binds them to the WeatherForecast web service and the SMTP Server service respectively. The updated diagram, as seen in Figure 4, also shows that the architect decided to keep the generated BookHotel service component in order to enhance the functionality of an existing repository service, the HotelReservation web service. The new “wrapper” component complements the behaviour of the original reservation service by functionality that corresponds to the travel reservation’ specific needs. It naturally has a reference, promoted to the composite level and bound to the original reservation service.

[image: image40.png]
Figure 4 - Sample Completed SCA Diagram
This second SCA diagram identifies service names that the architect has decided to use, promotes the reuse of some existing services as well as creates a new Travel service to be reused in other parts of the global SOA. In addition, by using it, the architect conveys to developers the need to create a new reusable service component (not a reusable service instance) that must follow a particular interface and dependency.

The last step in the scenario corresponds to the JBI infrastructure layer. The team charged with designing, configuring and deploying on the infrastructure decides that their JBI-compliant ESB is the runtime target for the travel process. By using their ESB design editor, they can already find generated artefacts as shown in Figure 5.
[image: image41.png]
Figure 5 - Sample JBI ESB Deployment Structure

JBI Service Units corresponding to the original hotel and weather services have been generated in the SOAP binding component and similarly for the SMTP service, a service unit has been placed in the SMTP binding component. Running the Travel service orchestration process requires a BPEL engine and if the SCA diagram does not already mention BPEL as the implementation language for this component, the ESB team can take this decision. Similarly for the BookHotel wrapper that is to be deployed into the plain Java service engine, the appropriate service unit is placed accordingly. If the Travel service is to be exposed as a web service, a service unit could simply be deployed into the SOAP binding component.

Although the presented transformation scenario is fictional, most of the elements involved (editors, the STP-IM and transformations) already exist in Eclipse STP and provide to a certain extent the functionality described.

7 Document Management

Feel free to contact the following persons for any question about this document:

	Pascal Déchamboux

Catherine Hamon
	MAPS/AMS

	pascal.dechamboux@orange-ftgroup.com
catherine.hamon@orange-ftgroup.com
	Tel: 04 76 76 44 16

Tel: 04 76 76 44 88

List of Releases:

	Release
	Date
	§

	Action

	Modification

	V0.1
	02/10/2006
	
	C
	Document creation

	V0.2
	13/10/2006
	
	U
	SOA state of the art, start of architectural patterns, use case TMM

	V0.5
	24/10/2006
	
	U
	Use case TMM completed, start of ESB product analysis

	V0.8
	05/01/2007
	
	U
	TMM use case updated

BEA Aqualogic analysis

IBM WebSphere ESB section updated

	V0.9
	19/01/2007
	
	U
	BPEL-based orchestration demonstrator

	V0.9a
	19/02/2007
	
	U
	SCA Standardisation Section

	V0.9b
	21/02/2007
	
	U
	BPEL-based orchestration demonstrator (review)

	V0.9c
	22/02/2007
	
	U
	Inter-enterprises collaborative process

	V0.9d
	01/03/2007
	
	U
	JBI Standardisation Section

	V1.0
	01/03/2007
	
	U
	Document review

	V1.1
	14/05/2007
	
	U
	Updated following mid-project review on 11/04/2007 related to SOA infrastructure (SOA vs. ESB), the distribution in PEtALS, limitations and evolutions of the JBI standard, relationships between SCA and JBI standards and discussion on SCA and JBI mapping

	V1.2
	22/10/2007
	
	U
	 Added section on orchestration usage demonstrator V2, scenario #4

	V1.2a
	11/03/2008
	
	U
	Conclusions added in Section "ESB product analysis". Global reformatting

	V1.2b
	11/03/2008
	
	U
	Added section on technical view, scenario #2

	V1.2c
	12/03/2008
	
	U
	Added section on functional architecture design, scenario #3

	V1.2d
	13/03/2008
	
	U
	Added ESB embedded orchestration usage demonstrator V3, scenario #4

	V1.2e
	14/03/2008
	
	U
	Added section on model-driven integration between SCA and JBI (based on STP-IM)

Data 1 (JDBC)

Data 2 (XML / file)

Data n (WS)

BPM Engine

Application 1 (WS)

Application 2 (SMTP)

App Ext 1 (WS)

App Composite

Bus

<<Actor>>

Chief Operation Officer

<<System>>

CELINE

<<Actor>>

Mainten	ance Engineer

<<Actor>>

Team Operation Officer

<<Actor>>

Equipment Operator

<<Actor>>

Chief Logistics Officer

<<Actor>>

Platform Administrator

<<Actor>>

Resupply Manager

<<Actor>>

Chief Operation Officer

GIDE

<<Actor>>

Mainten	ance Engineer

<<Actor>>

Team Operation Officer

<<Actor>>

Equipment Operator

<<Actor>>

Chief Logistics Officer

<<Actor>>

Platform Administrator

<<Actor>>

Resupply Manager

MAINTENANCE

TBMS

APPRO

SIL

CELINE

Portal

Field

Operations

CELINE

Partner 2

time

Service 2.1

Service 2.2

Service 1.1

Service 1.2

Service 1.3

Partner 1

Collaborative process

Service 3.2

Service 3.1

Partner 3

Service C.1

Service C.2

Service C.1

Service C.2

Service C.1

CIS/ESB

� EMBED Word.Picture.8 ���

Importation of business process model XML file

Service C.2

Exportation of CIS model UML file

Modelling of business process

Definition and running of transformation rules

UML model visualization

�	 AquaLogic Interaction Process is an extended version of AquaLogic BPM.

�	 § = chapter(s) updated

�	 Action = C : Creation, U : Update, D : Deletion

_1249391907

_1266842241

_1266846030

_1266846031

_1266846033

_1266844978

_1266841481

_145041976.ppt

Naming

Service

configured bindings

SC

SP1

SP2

SP3

SP4

SC

SP1

SP2

SP3

SP4

dynamic bindings (established at consumer

start time)

_145042232.ppt

Broker

configured bindings

SC

SP1

SP2

SP3

SP4

SC

SP1

SP2

SP3

SP4

provider managed bindings (established at provider

configuration time)

_1141286036.doc
[image: image1.png]

_96311348.doc

[image: image1]

Service

Consumer

Service

Producer

Syntactic

contract

